首页> 外文学位 >Tin-iron based high capacity anodes for lithium-ion batteries.
【24h】

Tin-iron based high capacity anodes for lithium-ion batteries.

机译:用于锂离子电池的锡铁基高容量阳极。

获取原文
获取原文并翻译 | 示例

摘要

Since the demand for more powerful and smaller batteries is constantly increasing, finding new cathode and anode materials for Li-ion batteries has thus become a necessity. Recently, some progress has been made on cathode materials, for example the commercialization of LiFePO4. However, no real improvement has been reported for anode materials. Graphite is still dominant in today's battery; however it suffers from a low volumetric energy density. To overcome this, we have investigated Sn-Fe-C composites, which have the potential of doubling the volumetric capacity of graphite. In this study, we used two approaches to synthesize tin-iron materials: mechanochemical and hydrothermal methods.;Nanosized Sn-Fe-C anode materials were mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The mechanochemically synthesized Sn-Fe-C composite, unlike pure tin itself, which loses capacity very rapidly on cycling, maintains its capacity for more than 100 charge-discharge cycles. The electrochemical performance of the composite was further improved by optimizing the synthesis conditions, such as total grinding time, grinding media, the ratios of the reactants and the types of carbon. The optimized composite shows excellent extended cycling at C/10, delivering a first lithiation capacity as high as 740 mAh/g and 60 % of the capacity is retained after 170 cycles. In addition to the better cycling performance, the material also doubles the volumetric capacity of a graphite-based anode at 1C rate over 100 cycles.;Sn2Fe-based anode materials were also synthesized by the alternative solvothermal route, and the electrochemical performance was evaluated. To have a comprehensive understanding of the electrochemical mechanism of this Sn2Fe material, the structural evolution during cycling was investigated by synchrotron X-ray diffraction (XRD), X-ray Absorption Spectroscopy (XAS), and magnetic studies. Studies of the first cycle show that Li-Sn alloys were formed upon lithiation accompanied by the extrusion of metallic iron phase, while almost all the Sn2Fe was recovered at the end of delithiation with small portion of Fe remaining inactive. The second cycle shows a similar behavior, but with a faster structural evolution.
机译:由于对更强大和更小电池的需求不断增长,因此寻找用于锂离子电池的新正极和负极材料已成为必要。最近,在正极材料上已经取得了一些进展,例如LiFePO4的商业化。然而,尚未报道阳极材料的真正改善。石墨在当今电池中仍占主导地位。但是它的体积能量密度低。为了克服这个问题,我们研究了Sn-Fe-C复合材料,它具有使石墨的体积容量增加一倍的潜力。在这项研究中,我们使用了两种方法来合成锡铁材料:机械化学方法和水热方法。;通过在碳存在下用Ti还原SnO来机械化学合成纳米尺寸的Sn-Fe-C阳极材料。机械化学合成的Sn-Fe-C复合材料与纯锡本身不同,纯锡本身在循环中会很快失去容量,可在超过100个充放电循环中保持其容量。通过优化合成条件,例如总研磨时间,研磨介质,反应物的比例和碳的类型,可以进一步改善复合材料的电化学性能。经过优化的复合材料在C / 10时表现出出色的延长循环,可提供高达740 mAh / g的首次锂化容量,在170次循环后保留了60%的容量。除了具有更好的循环性能外,该材料还可以在100个循环中以1C的速率使石墨基阳极的体积容量增加一倍。还通过替代溶剂热途径合成了Sn2Fe基阳极材料,并评估了其电化学性能。为了全面了解这种Sn2Fe材料的电化学机理,通过同步加速器X射线衍射(XRD),X射线吸收光谱(XAS)和磁学研究了循环过程中的结构演变。第一个循环的研究表明,锂-锡合金是在锂化过程中伴随着金属铁相的挤出而形成的,而几乎所有的Sn2Fe都在锂化结束时被回收了,只有一小部分Fe处于非活性状态。第二个周期显示出类似的行为,但结构演变更快。

著录项

  • 作者

    Dong, Zhixin.;

  • 作者单位

    State University of New York at Binghamton.;

  • 授予单位 State University of New York at Binghamton.;
  • 学科 Materials science.;Chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 水产、渔业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号