首页> 美国卫生研究院文献>Materials >Enhanced Electrochemical Performance Promoted by Tin in Silica Anode Materials for Stable and High-Capacity Lithium-Ion Batteries
【2h】

Enhanced Electrochemical Performance Promoted by Tin in Silica Anode Materials for Stable and High-Capacity Lithium-Ion Batteries

机译:增强型电化学性能在硅阳极材料中促进的稳定和大容量锂离子电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although the silicon oxide (SiO2) as an anode material shows potential and promise for lithium-ion batteries (LIBs), owing to its high capacity, low cost, abundance, and safety, severe capacity decay and sluggish charge transfer during the discharge–charge process has caused a serious challenge for available applications. Herein, a novel 3D porous silicon oxide@Pourous Carbon@Tin (SiO2@Pc@Sn) composite anode material was firstly designed and synthesized by freeze-drying and thermal-melting self-assembly, in which SiO2 microparticles were encapsulated in the porous carbon as well as Sn nanoballs being uniformly dispersed in the SiO2@Pc-like sesame seeds, effectively constructing a robust and conductive 3D porous Jujube cake-like architecture that is beneficial for fast ion transfer and high structural stability. Such a SiO2@Pc@Sn micro-nano hierarchical structure as a LIBs anode exhibits a large reversible specific capacity ~520 mAh·g−1, initial coulombic efficiency (ICE) ~52%, outstanding rate capability, and excellent cycling stability over 100 cycles. Furthermore, the phase evolution and underlying electrochemical mechanism during the charge–discharge process were further uncovered by cyclic voltammetry (CV) investigation.
机译:虽然氧化硅(SiO 2)作为阳极材料,但由于其高容量,低成本,丰度和安全性,严重的容量衰减和放电电荷的缓慢电荷转移,因此锂离子电池(Libs)表示潜在和承诺过程对可用申请产生了严峻的挑战。这里,首先通过冷冻干燥和热熔自组装设计和合成了一种新型的3D多孔氧化硅锡(SiO 2 @ Sn)复合阳极材料,其中将SiO 2微粒包封在多孔碳中除了SN纳米纳瓦尔均匀分散在SiO 2 @ PC样芝麻籽中,有效地构建稳健和导电的3D多孔枣蛋糕状架构,这些架构是有利于快速离子转移和高结构稳定性的。这种SiO2 @ PC @ SN微纳米层次结构作为LIBS阳极表现出大型可逆特定容量〜520 MAH·G-1,初始库仑效率(ICE)〜52%,优异的速度能力,优异的循环稳定性100多循环。此外,通过循环伏安法(CV)调查进一步揭示在电荷 - 放电过程中的相进化和底层电化学机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号