首页> 外文学位 >Inverse optimal control for differentially flat systems with application to lower-limb prosthetic devices.
【24h】

Inverse optimal control for differentially flat systems with application to lower-limb prosthetic devices.

机译:适用于下肢假体设备的差动扁平系统的逆最优控制。

获取原文
获取原文并翻译 | 示例

摘要

Powered prosthetic devices have shown to be capable of restoring natural gait to amputees. However, the commercialization of these devices is faced by some challenges, in particular in prosthetic controller design. A common control framework for these devices is called impedance control. The challenge in the application of this framework is that it requires the choice of many controller parameters, which are chosen by clinicians through trial and error for each patient. In this thesis we automate the process of choosing these parameters by learning from demonstration. To learn impedance controller parameters for at-ground, we adopt the method of learning from exemplar trajectories. Since we do not at first have exemplar joint trajectories that are specific to each patient, we use invariances in locomotion to produce them from pre-recorded observations of unimpaired human walking and from measurements of the patient's height, weight, thigh length, and shank length. Experiments with two able-bodied human subjects wearing the Vanderbilt prosthetic leg with an able-bodied adaptor show that our method recovers the same level of performance that can be achieved by a clinician but reduces the amount of time required to choose controller parameters from four hours to four minutes.;To extend this framework to learning controllers for stair ascent, we need a model of locomotion that is capable of generating exemplar trajectories for any desired stair height. Motivated by this challenge, we focus on a class of learning from demonstration methods called inverse optimal control. Inverse optimal control is the problem of computing a cost function with respect to which observed trajectories of a given dynamic system are optimal. We first present a new formulation of this problem, based on minimizing the extent to which first-order necessary conditions of optimality are violated. This formulation leads to a computationally efficient solution as opposed to traditional approaches. Furthermore, we develop the theory of inverse optimal control for the case where the dynamic system is differentially at. We demonstrate that the solution further simplifies in this case, in fact reducing to finite-dimensional linear least-squares minimization. We show how to make this solution robust to model perturbation, sampled data, and measurement noise, as well as provide a recursive implementation for online learning. Finally, we apply our new formulation of inverse optimal control to model human locomotion during stair ascent. Given sparse observations of human walkers, our model predicts joint angle trajectories for novel stair heights that compare well to motion capture data. These exemplar trajectories are then used to learn prosthetic controllers for one subject. We show the performance of the learned controllers in a stair ascent experiment with the subject walking with the Vanderbilt prosthetic device.
机译:动力假肢设备已显示能够恢复被截肢者的自然步态。然而,这些设备的商业化面临一些挑战,特别是在假体控制器设计中。这些设备的通用控制框架称为阻抗控制。该框架在应用中的挑战在于,它需要选择许多控制器参数,这是临床医生根据每个患者的尝试和错误来选择的。在本文中,我们通过从演示中学习来自动选择这些参数。为了学习地面的阻抗控制器参数,我们采用了从示例轨迹中学习的方法。由于起初我们没有针对每个患者的典型关节轨迹,因此我们使用运动的不变性,从预先记录的对人体行走无障碍的观察结果以及对患者身高,体重,大腿长度和小腿长度的测量中得出它们。对两个身体健康的人的研究表明,我们的方法可以恢复与临床医生所能达到的相同水平的性能,但是可以减少从四个小时中选择控制器参数所需的时间到四分钟。;要将这个框架扩展到学习楼梯上升的控制器,我们需要一个运动模型,该模型能够为任何所需的楼梯高度生成示例性轨迹。受这一挑战的激励,我们专注于从称为逆向最优控制的演示方法中学习一类。逆最优控制是计算成本函数的问题,对于该成本函数,给定动态系统的观测轨迹是最优的。我们首先基于最小化违反最优性一阶必要条件的程度,提出了这个问题的新表述。与传统方法相反,这种表述导致了计算上有效的解决方案。此外,针对动态系统处于差分状态的情况,我们开发了逆最优控制理论。我们证明了在这种情况下,该解决方案得到了进一步简化,实际上减少到了有限维线性最小二乘最小化。我们将展示如何使该解决方案更健壮,以对扰动,采样数据和测量噪声进行建模,并为在线学习提供递归实现。最后,我们应用逆最优控制的新公式来模拟楼梯上升过程中的人类运动。鉴于对人类步行者的观察稀疏,我们的模型预测了新型楼梯高度的关节角度轨迹,该轨迹与运动捕捉数据具有很好的对比。然后,将这些示例性轨迹用于学习一个学科的假肢控制器。我们在楼梯攀爬实验中展示了博学的控制器的性能,其中受试者使用范德比尔特假肢行走。

著录项

  • 作者

    Aghasadeghi, Navid.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Robotics.;Biomedical engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号