首页> 外文学位 >The Role of Environmental Dynamics in the Emergence of Autocatalytic Networks.
【24h】

The Role of Environmental Dynamics in the Emergence of Autocatalytic Networks.

机译:环境动力学在自动催化网络出现中的作用。

获取原文
获取原文并翻译 | 示例

摘要

For life to arise from non-life, a metabolism must emerge and maintain itself, distinct from its environment. One line of research seeking to understand this emergence has focused on models of autocatalytic reaction networks (ARNs) and the conditions that allow them to approximate metabolic behavior. These models have identified reaction parameters from which a proto-metabolism might emerge given an adequate matter-energy flow through the system. This dissertation extends that research by answering the question: can dynamically structured interactions with the environment promote the emergence of ARNs? This question was inspired by theories that place the origin of life in contexts such as diurnal or tidal cycles. To answer it, an artificial chemistry system with ARN potential was implemented in the dissipative particle dynamics (DPD) modeling paradigm. Unlike differential equation (DE) models favored in prior ARN research, the DPD model is able to simulate environmental dynamics interacting with discrete particles, spatial heterogeneity, and rare events. This dissertation first presents a comparison of the DPD model to published DE results, showing qualitative similarity with some interesting differences. Multiple examples are then provided of dynamically changing flows from the environment that promote emergent ARNs more than constant flows. These include specific cycles of energy and mass flux that consistently increase metrics for ARN concentration and mass focusing. The results also demonstrate interesting nonlinear interactions between the system and cycle amplitude and period. These findings demonstrate the relevance that environmental dynamics has to ARN research and the potential for broader application as well.
机译:为了使生命源于非生命,新陈代谢必须出现并维持自身,与环境不同。试图了解这种现象的研究的一条线集中在自动催化反应网络(ARN)的模型以及使它们近似于代谢行为的条件上。这些模型已经确定了反应参数,如果有足够的物质-能量流过系统,则可能会从中产生新陈代谢。本文通过回答以下问题扩展了该研究:动态与环境的结构化交互是否可以促进ARN的出现?这个问题的灵感来自将生命起源置于昼夜或潮汐周期等背景中的理论。为了解决这个问题,在耗散粒子动力学(DPD)建模范例中实现了具有ARN潜力的人工化学系统。与先前的ARN研究中偏爱的微分方程(DE)模型不同,DPD模型能够模拟与离散粒子,空间异质性和稀有事件相互作用的环境动力学。本文首先对DPD模型与已发表的DE结果进行了比较,显示出质的相似性和一些有趣的差异。然后提供了多个示例,这些示例动态地改变了环境中的流量,从而比固定流量更能促进出现ARN。这些包括能量和质量通量的特定循环,这些循环不断提高ARN浓度和质量聚焦的指标。结果还证明了系统与循环幅度和周期之间有趣的非线性相互作用。这些发现证明了环境动力学与ARN研究的相关性以及广泛应用的潜力。

著录项

  • 作者

    Fusion, Joe.;

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Systems science.;Computer science.;Biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号