首页> 外文学位 >The intricate role of connective tissue growth factor (CTGF/CCN2) in prenatal osteogenesis: A heretofore oversimplified dogma of the CCN field.
【24h】

The intricate role of connective tissue growth factor (CTGF/CCN2) in prenatal osteogenesis: A heretofore oversimplified dogma of the CCN field.

机译:结缔组织生长因子(CTGF / CCN2)在产前成骨中的复杂作用:迄今为止,CCN领域的过分简化的教条。

获取原文
获取原文并翻译 | 示例

摘要

Connective tissue growth factor (CTGF/CCN2) is axiomatically necessary for proper skeletal development and function. We need not look further than the studies that have been done to date utilizing mice genetically engineered to lack CTGF production. These CTGF null or knockout (KO) mice fail to form a normal murine skeleton and instead yield one littered with bony dysmorphisms, including incompetent craniofacial development, kinked limb bones, and misshapen ribs that are not conducive to proper respiratory function. As a result, the global lack of CTGF is incompatible with postnatal life. A closer look at several sites demonstrated defects in physiologic processes necessary for bone formation - angiogenesis, chondrogenesis, and osteogenesis. Therefore, the dogma in the CCN protein field to date has been that systemic ablation of CTGF production in vivo results in global defects in bone development.;We believe this dogma is an oversimplification of the role of CTGF on skeletal development. Our initial impetus leading us to this belief was the gross identification of the specific skeletal sites malformed in CTGF KO mice, in particular the bones of the limbs. While in the lower limb of CTGF KO mice the tibiae and fibulae are misshapen, the adjacent femora and digits are phenotypically normal. The same is true for the upper limb, in which the radii and ulnae are phenotypically abnormal while the humeri and digits are normal. Therefore, we believe that the role of CTGF in skeletogenesis is site-specific such that its loss affects local skeletal patterning and/or mechanobiological cues resulting in the unique phenotype seen in CTGF KO mice.;The research of this dissertation constitutes a comprehensive skeletal analysis of CTGF KO mice and in so doing we determined the extent and location of skeletal abnormalities. We found skeletal site-specific changes in growth plate organization, bone microarchitecture and shape and gene expression levels in CTGF KO compared to wild-type (WT) mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and non-allometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length.;We further continued the skeletal characterization of CTGF KO bones with an analysis of bone cell ultrastructure and matrix composition. These studies demonstrated that, while CTGF is not necessary for complete morphologic maturation of bone cells, global ablation results in ultrastructural features not commonly seen in WT bones. Our findings include drastically dilated rough endoplasmic reticulum (RER) in osteoblasts of the tibial diaphyseal region, comprising the phenotypic kink in CTGF KO mice and ultrastructural dysmorphologies of CTGF KO osteoclasts including multi-layered, membranous inclusions, decreased vacuolization and ruffled border extents, and disproportionately large clear zones. Lastly, FT-IR analysis demonstrated heterogeneity in CTGF KO bone composition. The results of this dissertation have revealed a more complex role for CTGF in osteogenesis and have identified potential mechanisms and future research directions to fully understand this intricate story.
机译:结缔组织生长因子(CTGF / CCN2)对于适当的骨骼发育和功能而言,是公理上必不可少的。迄今为止,我们无需再进行其他研究,而利用基因工程改造的小鼠缺乏CTGF的产生进行了研究。这些CTGF无效或基因敲除(KO)小鼠无法形成正常的小鼠骨骼,而是产生一只散布着骨性畸形的畸形畸形,包括颅面发育不全,四肢扭结和肋骨畸形,这些有害于正常的呼吸功能。结果,全球缺乏CTGF与产后生活格格不入。仔细观察几个部位可以发现骨骼形成所必需的生理过程中的缺陷-血管生成,软骨生成和成骨。因此,迄今为止,CCN蛋白领域的教条一直是体内CTGF产生的系统性消融导致骨骼发育的整体缺陷。;我们认为,这种教条过度简化了CTGF在骨骼发育中的作用。我们最初的信念是对CTGF KO小鼠,特别是四肢骨骼畸形的特定骨骼部位的总体识别。在CTGF KO小鼠的下肢中,胫骨和腓骨畸形,而相邻的股骨和手指在表型上正常。上肢也是如此,其中半径和尺骨表型异常,而肱骨和手指正常。因此,我们认为CTGF在骨骼生成中的作用是位点特异性的,因此其损失会影响局部骨骼模式和/或力学生物学线索,从而导致在CTGF KO小鼠中观察到独特的表型。;本论文的研究构成了全面的骨骼分析CTGF KO小鼠的数量,并以此确定骨骼异常的程度和位置。我们发现,与野生型(WT)小鼠相比,CTGF KO中生长板组织,骨骼微结构以及形状和基因表达水平的骨骼部位特异性变化。生长板畸形包括增殖区减少和肥大区长度增加。阑尾骨骼部位显示干meta端小梁骨减少,而中干mid端骨和成骨表达标记增加。轴向骨骼分析显示,CTGF KO小鼠的尾椎骨,下颌骨和顶骨骨减少,成骨标记物表达减少。颅骨表型的分析表明,异体(基于尺寸)和非异体形状的变化导致CTGF KO颅骨形状的整体和区域差异。头骨形态的局部差异包括增加的头骨宽度和减小的头骨长度。我们通过对骨细胞超微结构和基质组成的分析,进一步延续了CTGF KO骨骼的骨骼特征。这些研究表明,尽管CTGF对于骨细胞的完全形态成熟不是必需的,但整体切除会导致WT骨骼不常见的超微结构特征。我们的发现包括在胫骨干骨区成骨细胞中急剧扩张的粗面内质网(RER),包括CTGF KO小鼠的表型扭结和CTGF KO破骨细胞的超微结构畸形,包括多层膜性包裹体,空泡减少和边缘边缘皱纹,以及很大的空白区域。最后,FT-IR分析表明CTGF KO骨成分不均一。本文的结果揭示了CTGF在成骨中的作用更为复杂,并确定了潜在的机制和未来的研究方向,以充分理解这个复杂的故事。

著录项

  • 作者

    Lambi, Alex Gregory.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Biology Cell.;Health Sciences Human Development.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号