首页> 外文学位 >Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality.
【24h】

Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality.

机译:功能性纳米纤维和胶体凝胶:增强功能的关键元素。

获取原文
获取原文并翻译 | 示例

摘要

Nanomaterials bridge the gap between bulk materials and molecular structures and are known for their unique material properties and highly functional nature which make them attractive for a variety of potential applications, from energy storage and pollution sensors to agricultural and biomedical products. These potential applications, coupled with advances in nanotechnology, have generated considerable interest in nanostructure research. The work presented in this dissertation focuses on two such nanostructures, electrospun nanofibers and nanodiamond particles, with an overarching goal of tailoring the material behavior for a desired outcome.;Our first research theme focuses on realizing the full potential of chitosan electrospinning by understanding the mechanism that enables fiber formation through cyclodextrin complexation as a function of solution properties, solvent types, and cyclodextrin content. We demonstrate that cyclodextrin addition not only enables chitosan fiber formation, but also extends the composition and solvent window for nanofiber synthesis while introducing a variety of mat topologies, including three-dimensional, self-supporting mats. These fiber formation improvements cannot be fully explained by conventional electrospinning parameters, but instead seem to be related to the molecular interactions between chitosan and cyclodextrin.;Our second research theme entails the modification of highly water soluble, poly(vinyl alcohol) (PVA) nanofibers dissolution properties via atomic layer deposition (ALD) post treatments. In this work, we demonstrate that applying different thicknesses of aluminum oxide nano-coatings can improve the stability of PVA nanofibers in high humidity conditions and significantly decrease the solubility of electrospun PVA mats in water, from seconds to multiple weeks. Controlling mat dissolution allows for the unique opportunity to modulate small molecule, such as drug, release from nanofibers without altering the core material so that prolonged release can be readily achieved from highly water soluble nanofibers.;The final research theme focuses on gaining a fundamental understanding of a new class of materials, nanodiamond, so that a desired microstructure can be achieved via functionalization or manipulating processing parameters. In particular, we utilize both steady and dynamic rheology techniques to systematically investigate systems of nanodiamonds dispersed in model nonpolar (mineral oil) and polar (glycerol) media. In both cases, selfsupporting colloidal gels form at relatively low nanodiamond content; however, the gel behavior is highly dependent on the type of media used. Nanodiamonds dispersed in mineral oil exhibit characteristic colloidal gel behavior, with a rheological response that is independent of both frequency and time. However, nanodiamonds dispersed in glycerol exhibit a time dependent response, with the strength of the colloidal gels increasing several orders of magnitude. We attribute these rheological differences to changes in solvent complexity, where new particle-solvent and particle-particle interactions have the potential to delay optimal gel formation. In addition to colloidal gel formation, we use large oscillatory strains to probe the effect of processing parameters on microstructure disruption and recovery. The results indicate that the formation and rearrangement of the nanodiamond microstructures are concentration dependent for both media types; however, the recovery after breakdown is different for each system. Recovery of the nanodiamond/mineral oil gels is incomplete, with the strength of the recovered gel being significantly reduced. In contrast, the original strength of the nanodiamond/glycerol gels is recoverable as the system restructures with time. The practical implications of these results are significant as it suggest that shear history and solvent polarity play a dominant role in nanodiamond processing.
机译:纳米材料弥合了散装材料和分子结构之间的鸿沟,并以其独特的材料特性和高度功能性而闻名,这使其在从能量存储和污染传感器到农业和生物医学产品的各种潜在应用中具有吸引力。这些潜在的应用,以及纳米技术的进步,引起了人们对纳米结构研究的极大兴趣。本文的工作集中在两种纳米结构上,即电纺纳米纤维和纳米金刚石颗粒,其首要目标是调整材料的性能以达到理想的结果。我们的第一个研究主题是通过了解机理来实现壳聚糖电纺的全部潜力。能够通过环糊精络合形成纤维,这是溶液性质,溶剂类型和环糊精含量的函数。我们证明,添加环糊精不仅可以使壳聚糖纤维形成,而且还可以扩展纳米纤维合成的成分和溶剂范围,同时引入各种垫子拓扑结构,包括三维自支撑垫子。这些纤维形成的改善不能用常规的电纺丝参数完全解释,而似乎与壳聚糖和环糊精之间的分子相互作用有关。我们的第二个研究主题是改性高水溶性聚乙烯醇(PVA)纳米纤维通过原子层沉积(ALD)后处理的溶解特性。在这项工作中,我们证明了应用不同厚度的氧化铝纳米涂层可以提高PVA纳米纤维在高湿度条件下的稳定性,并显着降低电纺PVA垫在水中的溶解度,从几秒钟到几周不等。控制垫的溶出度为调节小分子(例如药物)从纳米纤维中释放而不改变核心材料提供了独特的机会,因此可以容易地从高度水溶性的纳米纤维中实现延长释放。最终的研究主题着重于获得基本的了解。新型材料纳米金刚石,因此可以通过功能化或处理工艺参数来获得所需的微结构。特别是,我们利用稳态和动态流变技术来系统研究分散在模型非极性(矿物油)和极性(甘油)介质中的纳米金刚石系统。在这两种情况下,自支撑胶体凝胶均以相对较低的纳米金刚石含量形成。但是,凝胶行为高度依赖于所用介质的类型。分散在矿物油中的纳米金刚石表现出特征性的胶体凝胶行为,其流变学响应与频率和时间无关。但是,分散在甘油中的纳米金刚石表现出时间依赖性,胶体凝胶的强度增加了几个数量级。我们将这些流变学差异归因于溶剂复杂性的变化,其中新的颗粒-溶剂和颗粒-颗粒相互作用可能会延迟最佳凝胶的形成。除了胶体凝胶的形成,我们使用大的振荡菌株来探究加工参数对微结构破坏和恢复的影响。结果表明,两种介质类型的纳米金刚石微结构的形成和重排均与浓度有关。但是,每个系统崩溃后的恢复情况是不同的。纳米金刚石/矿物油凝胶的回收不完全,回收的凝胶的强度显着降低。相反,随着系统随着时间的变化,纳米金刚石/甘油凝胶的原始强度是可恢复的。这些结果的实际意义很重要,因为它表明剪切历史和溶剂极性在纳米金刚石加工中起主要作用。

著录项

  • 作者

    Vogel, Nancy Amanda.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Chemical engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号