首页> 外文学位 >Precise Spatiotemporal Control of Voltage-Gated Excitability in Neural Dendrites.
【24h】

Precise Spatiotemporal Control of Voltage-Gated Excitability in Neural Dendrites.

机译:神经树突中电压门控兴奋性的时空精确控制。

获取原文
获取原文并翻译 | 示例

摘要

Neural dendrites continually prove to harness more computational complexity than previously thought. The voltage-gated ion channels distributed throughout a dendritic tree are key determinants of dendritic excitability and computation. However, little is known about the specific functional impacts of voltage-gated excitability in discrete dendritic regions. Recently, an optical revolution in neuroscience has yielded a vast array of optical tools for functional interrogation of neurons and neural circuits. One such tool, Quarternary-ammonium Azobenzene Quarternary-ammonium (QAQ), is an optically-controllable small-molecule drug that affects voltage-gated ion channels. In its trans conformation, which is photo-inducible with green light, QAQ directly blocks all voltage-gated ion channels tested, but rapidly un-blocks those channels when converted to its cis form with near-ultraviolet light (Mourot et al. 2012). It does not photo-bleach, and can be robustly photoswitched back and fourth to either block or unblock channels in a matter of milliseconds. QAQ is a promising tool to control voltage-gated excitability in neural dendrites with the spatiotemporal precision of light.;In this thesis we use QAQ to rapidly, reversibly, and locally control voltage-gated ion channel activity in neural dendrites using targeted light. A wealth of experimental evidence using traditional pharmacology is already available about specific voltage-gated ion channels in CA1 pyramidal cells, so we first apply QAQ via a patch-pipette to CA1 pyramidal cells and confirm that it works as expected in a whole-cell. We find that trans-QAQ blocks somatic action potentials, blocks dendritic calcium activity, and enhances EPSP summation. These are all processes driven by QAQ-sensitive voltage-gated ion channel types that either boost (sodium and calcium channels) or dampen (potassium channels) intrinsic excitability.;We then investigate the level of spatial control we can achieve with QAQ using dendritic calcium imaging. Indeed, for up to three seconds after photo-switching the molecule, control is extremely precise. With this knowledge, we use local block of voltage-gated ion channels and calcium imaging to confirm and extend previous findings that voltage-gated calcium channel activity is relatively uniform throughout the apical dendritic tree of CA1 pyramidal cells. Finally, we specifically photo-control voltage-gated ion channels in the apical dendrites of CA1 neurons to experimentally probe whether dendrite-specific voltage-gated excitability affects the degree of action potential back-propagation. We find that dendritic voltage-gated ion channels determine whether a CA1 pyramidal neuron will undergo strong or weak back-propagation, a notion that has only previously been modeled.
机译:神经树突不断证明比以前想象的要利用更多的计算复杂性。分布在整个树状树中的电压门控离子通道是树状兴奋性和计算的关键决定因素。然而,对于离散树突区域中电压门控兴奋性的特定功能影响知之甚少。最近,神经科学领域的一场光学革命产生了用于光学询问神经元和神经回路的各种光学工具。一种这样的工具,季铵偶氮苯季铵(QAQ)是一种可光控制的小分子药物,会影响电压门控离子通道。 QAQ的反式构象可以被绿光光诱导,它可以直接阻断所有测试的电压门控离子通道,但是当它们被近紫外光转换成顺式时,它们会迅速解除阻断(Mourot等,2012)。 。它不会进行光漂白,并且可以在几毫秒内可靠地将光导倒换到第四位,以阻塞或解除阻塞通道。 QAQ是一种以光的时空精度控制神经树突中电压门控兴奋性的有前途的工具。关于CA1锥体细胞中特定电压门控离子通道的使用传统药理学的大量实验证据已经可用,因此我们首先通过贴片移液器将QAQ应用于CA1锥体细胞,并确认其在全细胞中可以正常工作。我们发现反式QAQ阻止体细胞动作电位,阻止树突状钙活动,并增强EPSP求和。这些都是受QAQ敏感的电压门控离子通道类型驱动的过程,这些离子通道类型可以增强(钠和钙通道)或抑制(钾通道)本征兴奋性;然后我们研究使用树突状钙通过QAQ可以实现的空间控制水平成像。实际上,在对分子进行光切换后的三秒钟之内,控制都是极其精确的。有了这些知识,我们使用电压门控离子通道的局部阻滞和钙成像来确认和扩展先前的发现,即电压门控钙通道的活性在整个CA1锥体细胞的顶端树突树中相对均匀。最后,我们专门控制CA1神经元根尖树突中的电压门控离子通道,以实验方式探测树突特异性电压门控兴奋性是否影响动作电位的反向传播程度。我们发现,树突状电压门控离子通道决定了CA1锥体神经元将经历强反向传播还是弱反向传播,这一概念以前仅被建模过。

著录项

  • 作者

    Fedorchak, Alexis Voorheis.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biomedical engineering.;Neurosciences.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 55 p.
  • 总页数 55
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号