首页> 外文学位 >Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement.
【24h】

Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement.

机译:编程化学动力学:设计具有DNA链置换的动态反应网络。

获取原文
获取原文并翻译 | 示例

摘要

Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.;In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.;Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.;In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.;We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.
机译:在上个世纪,芯片革命使我们能够构建更快,更小,更复杂的计算机。今天,这些计算机控制着电话,汽车,卫星,装配线和其他机电设备。就像电线控制机电设备一样,活生物体也使用“化学接线”来决定其环境并控制物理过程。当前,这两种基板之间的最大区别在于,尽管我们已经具备用于硅编程的抽象,设计原理,验证和制造技术,但我们对编程化学没有可比的理解或专业知识。迈向学习如何系统地设计化学系统中规定的非平衡动力学行为的目标。我们使用化学反应网络(CRN)的形式主义,结合质量动力学,作为我们指定动力学行为的程序语言。利用核酸纳米技术的工具(在第1章中介绍),我们将合成DNA分子用作我们的分子体系结构,并将脚趾介导的DNA链置换作为我们的反应原语。和定量表征的工具。因此,我们着手对DNA链置换的“装置物理学”进行详细研究(第2章)。通过使用一维能量景观上的随机游走的直观模型,具有单个碱基对步骤的二级结构动力学模型,以及在多个细节层次上研究过程,我们提出了股置换生物物理学和动力学的统一视图。结合了三维几何和空间效应的粗粒度分子模型。此外,我们实验研究三向分支迁移的热力学。我们的发现与先前测得的或推断的杂交,磨损和分支迁移的速率一致,并为链置换动力学提供了生物物理学的解释。我们的工作为链置换级联的精确建模铺平了道路,这将有助于模拟和构建更复杂的分子系统。在第3章和第4章中,我们确定并克服了使用基于常规DNA的技术所涉及的关键实验挑战用于试管中的工程动力学行为。在此过程中,我们确定了重要的设计规则,这些规则可指导我们选择分子基序,以及用于设计和验证分子序列的DNA序列的算法。我们还开发了灵活的分子策略来“调节”我们的反应速率和化学计量,以补偿分子实施中不可避免的非理想性,例如不完全合成的分子和与所需途径竞争的虚假“泄漏”途径。三个不同的自催化反应,然后我们将其合并为从头化学振荡器。与使用复杂的进化分子(例如蛋白质)来实现这种行为的生物网络不同,我们的试管实现是第一个证明沃森-克里克碱基配对相互作用足以满足振荡动力学的方法。由于我们的设计流程是通用的并且适用于任何CRN,因此我们从头进行的化学振荡器的实验演示可以实现具有其他动态行为的CRN的系统构建。

著录项

  • 作者

    Srinivas, Niranjan.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Computer science.;Nanotechnology.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号