首页> 外文学位 >Bio-Functionalized PEG Hydrogels to Study and Direct Mesenchymal Stem Cell Migration and Differentiation
【24h】

Bio-Functionalized PEG Hydrogels to Study and Direct Mesenchymal Stem Cell Migration and Differentiation

机译:生物功能化PEG水凝胶研究和直接间充质干细胞迁移和分化。

获取原文
获取原文并翻译 | 示例

摘要

The in vivo microenvironment niche is a dynamic structure that locally presents a multitude of biophysical and biochemical signals that regulate cell behavior. Reciprocally, cells remodel this local microenvironment through altering the physical structure and biochemical composition of this heterogeneous milieu. These cell-matrix interactions play an integral role in directing mesenchymal stem cell (MSC) behavior (e.g., migration, proliferation, differentiation) during bone regeneration. The focus of this thesis is to exploit synthetic PEG-based hydrogels and bio-click conjugation reactions to functionalize relevant bio-molecules (e.g., mimetic peptide, proteins) to recapitulate important facets of the native extracellular matrix (ECM) to study their role in regulating MSC behavior (e.g., migration, differentiation, proliferation) and elucidate aspects of how MSCs interact and remodel their local niche.;First, peptide-functionalized thiol-ene hydrogels are utilized to tune the biophysical (e.g., crosslinking density) and biochemical (e.g., adhesive ligand density) nature of the MSC microenvironment and observe their effect on 3D MSC spreading and migration. Next, microrheological techniques are exploited to elucidate the dynamic cell-mediated remodeling of the local hydrogel structure during 3D MSC migration. Both of these studies provide insight and characterization of cell-matrix interactions within enzymatically degradable hydrogels. Thiol-ene photoconjugation is then employed to functionalize PEG hydrogel scaffolds with full-length proteins (e.g., stromal derived factor 1alpha, bone morphogenetic protein 2) to manipulate MSC behavior in vitro. Subsequently, this platform is introduced into a critical-sized bone defect model to study the effect of immobilized protein signals on cellular invasion and mineralized tissue formation during bone regeneration in vivo. Finally, to probe the singular and synergistic effects of multiple protein signals on MSC migration, differentiation or proliferation a series of bio-click reactions (e.g., thiol-ene, thiol-yne, strain-promoted azide alkyne cycloaddition, inverse electron demand Diels-Alder) are exploited to spatiotemporally conjugate proteins to hydrogel scaffolds in biologically complex serum solutions. The knowledge garnered from these studies will contribute to better engineering of synthetic hydrogels as in vitro cell culture substrates, drug delivery vehicles, and cell carrier or recruitment platforms for tissue engineering applications.
机译:体内微环境生态位是一种动态结构,可局部呈现调节细胞行为的多种生物物理和生化信号。相应地,细胞通过改变这种异质环境的物理结构和生化成分来重塑该局部微环境。这些细胞-基质相互作用在骨再生期间在指导间充质干细胞(MSC)行为(例如迁移,增殖,分化)中起着不可或缺的作用。本论文的重点是利用合成的基于PEG的水凝胶和生物点击偶联反应来功能化相关的生物分子(例如,模拟肽,蛋白质),以概括天然细胞外基质(ECM)的重要方面,以研究其在细胞外基质中的作用。调节MSC行为(例如,迁移,分化,增殖)并阐明MSC如何相互作用和重塑其局部生态位的方面;首先,利用肽功能化的硫醇-烯水凝胶来调节生物物理性质(例如,交联密度)和生化( MSC微环境的性质),并观察其对3D MSC扩散和迁移的影响。接下来,利用微流变技术来阐明3D MSC迁移过程中局部水凝胶结构的动态细胞介导的重塑。这两项研究都提供了可酶降解水凝胶中细胞-基质相互作用的见解和特征。然后使用硫醇-烯光缀合来用全长蛋白(例如基质衍生因子1α,骨形态发生蛋白2)功能化PEG水凝胶支架,以在体外操纵MSC行为。随后,该平台被引入临界尺寸的骨缺损模型中,以研究固定蛋白信号对体内骨骼再生过程中细胞浸润和矿化组织形成的影响。最后,为探讨多种蛋白质信号对MSC迁移,分化或增殖的奇异和协同效应,进行了一系列生物点击反应(例如,硫醇-烯,硫醇-炔,应变量促进的叠氮化物炔烃环加成,电子逆需求Diels- (Alder)被用于在生物复杂的血清溶液中时空结合蛋白质至水凝胶支架。从这些研究中获得的知识将有助于更好地设计合成水凝胶,将其用作体外细胞培养底物,药物递送载体以及组织工程应用的细胞载体或募集平台。

著录项

  • 作者

    Kyburz, Kyle Anthony.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号