首页> 外文学位 >NMR investigation of field-induced magnetic order in barium manganese oxide.
【24h】

NMR investigation of field-induced magnetic order in barium manganese oxide.

机译:钡锰氧化物中场致磁序的NMR研究。

获取原文
获取原文并翻译 | 示例

摘要

As early as 1956, Matsubara and Matsuda found an exact correspondence between a lattice gas model and a quantum antiferromagnet model[1]. They paved the way for the language of integer spin boson particles to be used interchangeably with quantum magnetic insulator systems in a general manner. For example, an analogy of density of bosons is found in magnetization, and analogy of chemical potential is found in external field. Just as there exist corresponding parameters between these two seemingly unrelated systems, quantum magnets can also exhibit consequences of Boson particle systems. In particular, spin-ordering transition in quantum magnets can be interpreted as Bose-Einstein condensate (BEC) transition in Boson particle framework. Direct observation of BEC in Boson particles has been realized in 4He's superfluid transition and in dilute atomic gas clouds cooled to very low temperatures[2]. In this thesis, we try to realize and analyze BEC transition through field-induced spin-ordering transition in the S = 1 antiferromagnetic dimer system, Ba3Mn2O8.;We perform NMR measurements with 135,137Ba nucleus as a local probe. Although S = 1 spin properties of Ba 3Mn2O8 come from electronic spins on Mn atoms, hyperfine coupling between Mn electronic spins and Ba nuclear spins allow us to infer Mn electrons' spin information. Since there are 2 inequivalent Ba sites, Ba(1) and Ba(2), in Ba3Mn2O8, we essentially have two probes that provide a detailed picture of structure and nature of magnetism in this material. There are many antiferromagnetic BEC candidates, but there is a significant advantage of studying Ba3Mn 2O8. Unlike the other popular antiferromagnetic BEC candidates such as TlCuCl3[3] or BaCuSi2O6[4], we find no evidence of lattice deformation in Ba3Mn2O8 . This allows us an unprecedented clean look at magnetic properties.;Aside from the aforementioned simple technical advantage, there are new physics that we can learn from Ba3Mn2O 8. The geometric frustration of the triangular Mn5+ magnetic lattice of Ba3Mn2O8 coupled with interdimer interaction is predicted to result in incommensurate spin structure when the symmetry axis of Ba3Mn2O8 is aligned parallel to the field. Because of single ion anisotropy of the system, Ba3Mn 2O8 has phase diagram that depends on its alignment with respect to the external field[5]. This means that the microscopic spin structure is different depending on whether the material's symmetry axis is aligned parallel or perpendicular to the field. Also, since we are dealing with S = 1, we have potential to investigate spin-gap closure due to singlet and triplet states as well as triplet and quintet states if we are able to access high enough fields (15T to 30T). Measurements at National High Magnetic Field Laboratory (NHMFL), gives us a superficial taste of what it is like to be in the phase created by triplet and quintet gap closure.;The temperature range allowed by the Oxford dilution refrigerator system at Brown Lab, UCLA is from 1K down to 30mK. The magnetic field range allowed by the superconducting magnet at Brown Lab, UCLA is from 0T up to 12T. This combination of temperature and field range allows us to investigate the first quantum critical point (Hc1) in detail with various NMR measurements. Normal state frequency shift as a function of temperature near Hc1 reveals behavior consistent with dilute hardcore bose gas. Analysis of the lineshapes of NMR spectra going into spin order BEC phase as a function of field, we directly observe incommensurate nature of spin order and deduce development of order parameter consistent with mean-field theory. Finally, we verify that the language of dilute 3D Bosons also applies to Ba3Mn2O8 through T1 measurements. From critical behavior inferred in T1 measurements, we complete phase boundary diagram at low temperatures and apply general concept of softening in Goldstone mode near Hc1 to describe our T 1 dependence as a function of temperature.
机译:早在1956年,松原和松田就发现了晶格气体模型和量子反铁磁体模型之间的精确对应关系[1]。他们为整数自旋玻色子粒子的语言铺平了道路,使其可以以一般方式与量子磁绝缘体系统互换使用。例如,在磁化强度中可以找到玻色子密度的类比,而在外场中可以找到化学势的类比。正如在这两个看似无关的系统之间存在相应的参数一样,量子磁体也可能表现出玻色子粒子系统的后果。尤其是,量子磁体中的自旋有序跃迁可以解释为玻色子粒子骨架中的玻色-爱因斯坦凝聚(BEC)跃迁。在4He的超流体跃迁和冷却至极低温度的稀原子气云中已经实现了对玻色子粒子中BEC的直接观察[2]。在本文中,我们试图通过S = 1反铁磁二聚体系统Ba3Mn2O8的场诱导自旋有序跃迁来实现和分析BEC跃迁。我们以135,137Ba核为局部探针进行NMR测量。尽管Ba 3Mn2O8的S = 1自旋特性来自Mn原子上的电子自旋,但是Mn电子自旋与Ba核自旋之间的超精细耦合使我们能够推断出Mn电子的自旋信息。由于在Ba3Mn2O8中有2个不等价的Ba位,Ba(1)和Ba(2),我们基本上有两个探针可以提供这种材料的磁性结构和性质的详细图片。有许多反铁磁BEC候选物,但是研究Ba3Mn 2O8具有明显的优势。与其他流行的反铁磁BEC候选材料(例如TlCuCl3 [3]或BaCuSi2O6 [4])不同,我们没有发现Ba3Mn2O8发生晶格变形的迹象。除上述简单的技术优势外,我们还可以从Ba3Mn2O 8中学到新的物理原理。Ba3Mn2O8的三角形Mn5 +磁性晶格的几何受阻与二聚体的相互作用预计会导致当Ba3Mn2O8的对称轴平行于磁场对齐时,会导致自旋结构不相称。由于系统的单离子各向异性,Ba3Mn 2O8的相图取决于其相对于外场的排列[5]。这意味着微观自旋结构会有所不同,具体取决于材料的对称轴是平行于还是垂直于电场对齐。另外,由于我们处理的是S = 1,因此如果我们能够访问足够高的字段(15T至30T),我们就有可能研究由于单重态和三重态以及三重态和五重态引起的自旋间隙闭合。美国国家高磁场实验室(NHMFL)进行的测量使我们对三重态和五重态间隙闭合所产生的相的状态有了肤浅的感受;加州大学洛杉矶分校布朗实验室的牛津稀释制冷系统允许的温度范围从1K到30mK。 UCLA布朗实验室的超导磁体所允许的磁场范围为0T至12T。温度和场范围的这种结合使我们能够通过各种NMR测量来详细研究第一个量子临界点(Hc1)。正常状态的频移是Hc1附近温度的函数,揭示了与稀铁核玻色气体一致的行为。分析进入自旋阶数BEC相的NMR谱线形作为场的函数,我们直接观察到自旋阶数的不对称性,并推导了与均场理论相符的阶数参数的发展。最后,我们验证了通过T1测量,稀3D玻色子的语言也适用于Ba3Mn2O8。根据在T1测量中推断的临界行为,我们完成了低温下的相边界图,并应用了Hc1附近的Goldstone模式下的软化一般概念来描述T 1随温度的变化。

著录项

  • 作者

    Suh, Steve.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Physics Low Temperature.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号