首页> 外文学位 >The influence of meltwater on the thermal structure and flow of the Greenland Ice Sheet.
【24h】

The influence of meltwater on the thermal structure and flow of the Greenland Ice Sheet.

机译:融水对格陵兰冰原的热力结构和流动的影响。

获取原文
获取原文并翻译 | 示例

摘要

As the climate has warmed over the past decades, the amount of melt on the Greenland Ice Sheet has increased, and areas higher on the ice sheet have begun to melt regularly. This increase in melt has been hypothesized to enhance ice flow in myriad ways, including through basal lubrication and englacial refreezing. By developing and interpreting thermal ice-sheet models and analyzing remote sensing data, I evaluate the effect of these processes on ice flow and sea-level rise from the Greenland Ice Sheet.;I first develop a thermal ice sheet model that is applicable to western Greenland. Key components of this model are its treatment of multiple phases (solid ice and liquid water) and its viscosity-dependent velocity field. I apply the model to Jakobshavn Isbrae, a fast-flowing outlet glacier. This is an important benchmark for my model, which I next apply to the topics outlined above.;I use the thermal model to calculate the effect of englacial latent-heat transfer (meltwater refreezing within englacial features such as firn and crevasses) on ice dynamics in western Greenland. I find that in slow-moving areas, this can significantly warm the ice, but that englacial latent heat transfer has only a minimal effect on ice motion (60%) of the ice flux into the ocean, evidence of deep englacial warming is virtually absent. Thus, the effects of englacial latent heat transfer on ice motion are likely limited to slow-moving regions, which limits its importance to ice-sheet mass balance.;Next, I couple a model for ice fracture to a modified version of my thermal model to calculate the depth and shape evolution of water-filled crevasses that form in crevasse fields. At most elevations and for typical water input volumes, crevasses penetrate to the top ~200--300 meters depth, warm the ice there by ~10°C, and may persist englacially, in a liquid state, for multiple decades. The surface hydrological network limits the amount of water that can reach most crevasses. We find that the depth and longevity of such crevasses is relatively robust to realistic increases in melt volumes over the coming century, so that we should not expect large changes in the englacial hydrological system under near-future climate regimes. These inferences put important constraints on the timescales of the Greenland supraglacial-to-subglacial water cycle.;Finally, I assess the likelihood that higher-elevation surface melt could deliver water to regions where the bed is currently frozen. This hypothetical process is important because it could potentially greatly accelerate the seaward motion of the ice sheet. By analyzing surface strain rates and comparing them to my modeled basal temperature field, I find that this scenario is unlikely to occur: the conditions necessary to form surface-to-bed conduits are rarely found at higher elevations (~1600 meters) that may overlie frozen beds.
机译:在过去的几十年中,随着气候变暖,格陵兰冰原上的融化量增加了,冰原上较高的区域开始定期融化。据推测,这种融化的增加以多种方式增强了冰的流动,包括通过基础润滑和冰川回冻。通过开发和解释热冰盖模型并分析遥感数据,我评估了这些过程对格陵兰冰盖的冰流量和海平面上升的影响。格陵兰。该模型的关键组成部分是其对多相(固体冰和液态水)的处理以及与粘度有关的速度场。我将此模型应用于快速流动的出口冰川Jakobshavn Isbrae。这是我模型的重要基准,接下来我将其应用到上面概述的主题。;我使用热模型来计算冰川潜热传递(冰川和裂隙等冰川特征中的融水重新冻结)对冰动力学的影响在格陵兰西部。我发现在缓慢移动的区域中,这可以使冰显着变暖,但是冰川潜热传递对流入海洋的冰通量(60%)的冰运动影响很小,实际上没有深度的冰川变暖的证据。 。因此,冰川潜热传递对冰运动的影响可能仅限于缓慢移动的区域,这限制了其对冰盖质量平衡的重要性。接下来,我将冰破裂模型与热模型的修改版本相结合。计算在裂隙中形成的充水裂缝的深度和形状演化。在大多数海拔和典型的水输入量下,裂隙会渗透到约200--300米的深度,使那里的冰温升约10°C,并且在液态下会持续保持数十年的冰期。地表水文网络限制了可达到大多数裂缝的水量。我们发现,这种裂缝的深度和寿命对于未来一个世纪的融水量的实际增加相对稳健,因此我们不应该期望在不久的将来的气候体制下,冰河水文系统发生重大变化。这些推论对格陵兰冰川至冰川下水循环的时间尺度施加了重要的约束。最后,我评估了高海拔地表融化能将水输送到目前冻结床的区域的可能性。这个假设过程很重要,因为它可能会极大地加速冰盖的向海运动。通过分析表面应变率并将其与我模拟的基础温度场进行比较,我发现这种情况不太可能发生:在可能覆盖的较高海拔(〜1600米)上很少发现形成地表导管的必要条件冷冻床。

著录项

  • 作者

    Poinar, Kristin.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Geophysics.;Climate change.;Hydrologic sciences.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号