首页> 外文学位 >Modeling, Analysis, and Experimental Investigation of a Variable Displacement Linkage Pump.
【24h】

Modeling, Analysis, and Experimental Investigation of a Variable Displacement Linkage Pump.

机译:可变排量连杆泵的建模,分析和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Hydraulic power systems offer a robust, compact, and flexible method of power transmission and are used widely in both industrial and mobile applications. While 2% of the energy consumed in the US passes through hydraulic systems, less than half of it does any useful work largely due to the use of inefficient flow control valves. Variable displacement pumps offer a method of delivering the required flow to an actuator without suffering the losses associated with a flow control valve. However, current variable displacement pumps exhibit poor efficiency at low displacement because their primary sources of energy loss are largely independent of displacement. Here, a novel adjustable linkage is proposed as the driving mechanism of a variable displacement pump. The linkage is constructed such that the pumping piston returns to the same top-dead-center position at all displacement, and can also achieve zero displacement. As a result of these features, the pump displacement is infinitely variable, and the unswept volume is remains constant at all displacements. By using pinned joints rather than sliding joints, the majority of the energy losses scale with output power resulting in a pump that is efficient over a wide range of operating conditions.;In this thesis, a complete model of a variable displacement linkage pump is developed. A method of constructing the adjustable sixbar mechanism and the possible embodiments is presented. A new solution rectification technique is developed providing a robust method of generating valid linkages that is generally applicable to other mechanisms. The kinematics of the mechanism are then presented to describe the motion of the links and output piston. A kinetostatic model of the mechanism provides a means of determining the internal mechanical energy losses. A non-linear model of the bearing friction augments the model, but requires numerical methods to solve, and increases computational complexity. A dynamic model of the pumping cylinders and pump manifold provide a means of determining the fluid behavior of the pump including output flowrates and pressures. These models are coupled to create a complete understanding of the variable displacement linkage pump. The model is designed to be predictive and computationally inexpensive for use in multi-objective optimizations. As such, no experimentally determined performance coefficients are required. No model of this level of completeness exist for linkage driven pumps, variable displacement or otherwise.;Two prototype pumps are presented and used to validate the models. A single cylinder pump is used to validate the mechanical energy loss model but was limited to low pressure operation due to large torque variations. Close agreement is demonstrated between the model and experiment. The model predicts a pump efficiency greater than 90% at displacements as low as 15% if roller bearings are used in the pin joints. To validate this prediction, a multi-cylinder prototype which uses roller bearings in the joints is designed. The kinematic and mechanical energy loss models are coupled to a basic pumping model for use in a multi-objective genetic algorithm to optimize the mechanism. The resulting pump demonstrates close agreement between the model and experimentally measured shaft torque and mechanical energy loss at various pressures, displacements, and input shaft speeds. However, out-of-plane deflection of the mechanism reduced the piston displacement and altered the trajectory reducing pump output. The true temporal piston position is measured and used as an input to the dynamic fluid model. The predicted and experimentally measured cylinder pressures demonstrate the effectiveness of the model at predicting the dynamic behavior of the fluid end of the pump.;It is shown that the models can accurately capture the physics of the pump without using tuning parameters or experimentally determined coefficients over a wide range of operating conditions. It is recommended that single shear linkage arrangements are avoided in future designs to increase the mechanism stiffness and improve performance. The variable displacement linkage pump offers the opportunity for high efficiency flow control at a wide range of operating conditions due to the nature of the energy loss mechanisms scaling with the output power. The flexibility of the driving sixbar mechanism allows for the optimization of the architecture for particular applications and the presented model provides a means of predicting performance.
机译:液压动力系统提供了一种强大,紧凑和灵活的动力传输方法,并广泛用于工业和移动应用中。尽管在美国消耗的能量中有2%是通过液压系统传递的,但由于使用了效率低的流量控制阀,因此只有不到一半的能量可以做任何有用的工作。可变排量泵提供了一种将所需流量输送到执行器的方法,而不会遭受与流量控制阀相关的损失。但是,当前的可变排量泵在低排量时效率很低,因为它们的主要能量损失源很大程度上与排量无关。在此,提出了一种新型的可调连杆作为可变排量泵的驱动机构。连杆的结构使得泵活塞在所有位移时都返回到相同的上止点位置,并且还可以实现零位移。这些功能的结果是,泵排量是无限可变的,未排量在所有排量下都保持恒定。通过使用销钉接头而不是滑动接头,大部分能量损失与输出功率成比例,从而使泵在宽范围的工作条件下都具有较高的效率。 。提出了一种构造可调节六杆机构的方法以及可能的实施方式。开发了一种新的解决方案纠正技术,该技术提供了一种生成有效链接的可靠方法,该方法通常适用于其他机制。然后介绍该机构的运动学,以描述连杆和输出活塞的运动。该机构的运动静力学模型提供了一种确定内部机械能损失的方法。轴承摩擦的非线性模型会扩大该模型,但需要使用数值方法来解决,并会增加计算复杂性。泵缸和泵歧管的动态模型提供了一种确定泵的流体行为(包括输出流量和压力)的方法。这些模型耦合在一起,以形成对可变排量连杆泵的完整理解。该模型被设计为可预测的,并且在计算上便宜,可用于多目标优化。这样,不需要实验确定的性能系数。对于连杆驱动泵,可变排量泵或其他变量,不存在这种完整性等级的模型。提出了两个原型泵并用于验证模型。单缸泵用于验证机械能损失模型,但由于扭矩变化大,因此仅限于低压运行。模型与实验之间显示出紧密的一致性。该模型预测,如果在销接头中使用滚柱轴承,则在低至15%的排量下泵效率将超过90%。为了验证该预测,设计了一种多气缸原型,该原型在接头中使用了滚动轴承。运动和机械能量损失模型与基本泵送模型耦合,用于多目标遗传算法以优化机制。所得泵证明了该模型与在各种压力,排量和输入轴转速下通过实验测量的轴扭矩和机械能损失之间的紧密一致性。但是,该机构的平面外偏转减小了活塞排量并改变了轨迹,从而降低了泵的输出。测量真实的瞬时活塞位置,并将其用作动态流体模型的输入。预测和实验测量的汽缸压力证明了该模型在预测泵流体端的动态行为方面的有效性;表明该模型可以准确地捕获泵的物理特性,而无需使用调整参数或实验确定的系数广泛的工作条件。建议在将来的设计中避免使用单剪力连杆机构,以增加机构刚度并改善性能。由于能量损失机制的性质随输出功率的变化而变化,可变排量联动泵为在宽范围的运行条件下进行高效流量控制提供了机会。驱动Sixbar机制的灵活性允许针对特定应用优化体系结构,并且所提供的模型提供了一种预测性能的方法。

著录项

  • 作者

    Wilhelm, Shawn.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 279 p.
  • 总页数 279
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号