首页> 外文学位 >Controlling microbial multicellular behaviors with saccharide derivatives.
【24h】

Controlling microbial multicellular behaviors with saccharide derivatives.

机译:用糖衍生物控制微生物的多细胞行为。

获取原文
获取原文并翻译 | 示例

摘要

Microbial multicellular behaviors like biofilm formation and swarming motility are known to increase their tolerance against antimicrobials. From microbial standpoint, nonmicrobicidal agents that do not impede growth are tolerable and therefore, there is a lower propensity to develop resistance against such agents as compared to microbicidal ones (antibiotics). This study describes a new antibiofilm approach of using nonmicrobicidal saccharide derivatives for controlling the multicellular behaviors of gram-negative bacteria, Pseudomonas aeruginosa and fungus, Candida albicans.;Pseudomonas aeruginosa is known to secrete rhamnolipids, a class of biosurfactants that plays an important role in maintaining the architecture of its biofilm and promoting its swarming motility. Here we show the ability of certain synthetic nonmicrobicidal disaccharide derivatives (DSDs) to mimic the biofunctions of rhamnolipids. The rhlA mutant of P. aeruginosa is incapable of synthesizing rhamnolipids and also unable to swarm on semi-solid agar gel. When the natural ligands, rhamnolipids were externally added into the semi-solid agar gel in a concentration dependent manner, the swarming of the rhlA mutant reactivated at lower concentrations (10 muM) and then at relatively higher concentrations (15 muM), the swarming reactivation was reversed. When some active synthetic DSDs were tested on the rhlA mutant, the bacterial swarming first reactivated and then the activation reversed at higher DSD concentrations, similar to the effect of externally added rhamnolipids. Previously, a known bacterial signalling molecule has been shown to exhibit a similar concentration dependent activation and then activation reversal for light simulation by Vibrio fischeri. Some DSDs having disaccharide stereochemistries (cellobiose or maltose) and a bulky aliphatic tail (3, 7, 11-trimethyl-dodecanyl) caused swarming reactivation of the rhlA mutant at concentrations lower than that caused by the externally added rhamnolipids.;The synthetic nonmicrobicidal DSDs were also very effective at inhibiting the adhesion of P. aeruginosa to polystyrene surface, and at inhibiting the bacterial biofilm formation. These DSDs were also potent dispersers of pre-formed biofilm of P. aeruginosa. The potent antibiofilm (inhibition and dispersion) activities were observed for those DSDs that possessed a disaccharide (cellobiose or maltose) stereochemistry and a bulky aliphatic chain such as 3, 7, 11-trimethyl-dodecanyl. These potent DSDs had half-maximal inhibitory concentrations for biofilm inhibition (IC50) and dispersion (DC50) comparable to those of known potent antibiofilm agents against P. aeruginosa. Gene-reporting assays indicate that the mechanism of action of such DSDs is not via the known las or rhl quorum sensing systems of P. aeruginosa but that the adhesin potein, pilin maybe a likely target of such molecules.;Biofilms formed under natural settings are usually formed by both bacteria and fungus that co-reside in the same microenvironment. Therefore, agents that can prevent mixed biofilms are desirable from a therapeutic standpoint. Despite being nonmicrobicidal to both fungal blastospores and hyphae, the synthetic DSDs were able to inhibit the biofilm formation of fungus Candida albicans. Microscopic evaluation showed that most DSDs did not prevent the blastospores-to-hyphae morphogenesis. The DSDs were effective at inhibiting biofilm formation of Candida albicans when applied within five minutes of seeding the test surface with fungal cells. Using a surface based assay it was shown that one DSD dramatically reduced the surface adhesion of Candida albicans hyphae. The antibiofilm activity of such DSDs against Candida albicans is probably due to their ability to prevent hyphae surface adhesion.
机译:已知微生物多细胞行为(例如生物膜形成和群体运动)会增加其对抗菌剂的耐受性。从微生物的观点来看,不妨碍生长的非杀微生物剂是可以忍受的,因此,与杀微生物剂(抗生素)相比,对这些药剂产生抗药性的可能性较低。这项研究描述了一种新的抗生物膜方法,该方法利用非杀微生物的糖衍生物控制革兰氏阴性细菌铜绿假单胞菌和真菌白色念珠菌的多细胞行为;众所周知,铜绿假单胞菌会分泌鼠李糖脂,这是一种在表面活性剂中起重要作用的生物表面活性剂。维持其生物膜的结构并促进其成群运动。在这里,我们显示了某些合成的非微生物二糖衍生物(DSDs)模仿鼠李糖脂的生物功能的能力。铜绿假单胞菌的rhlA突变体无法合成鼠李糖脂,也无法在半固体琼脂凝胶上聚集。当天然配体鼠李糖脂以浓度依赖的方式从外部添加到半固体琼脂凝胶中时,rhlA突变体的群体在较低浓度(10μM)下重新激活,然后在相对较高的浓度(15μM)下重新激活,该群体重新激活被颠倒了。当在rhlA突变体上测试一些活性合成DSD时,细菌群首先会重新激活,然后在较高DSD浓度下激活反转,类似于外部添加鼠李糖脂的作用。以前,已知的细菌信号分子已显示出类似的浓度依赖性激活,然后激活逆转,用于费氏弧菌的光模拟。一些具有双糖立体化学(纤维二糖或麦芽糖)和庞大的脂肪族尾巴(3、7、11-三甲基-十二烷基)的DSD导致rhlA突变体的群体重新激活,其浓度低于外部添加的鼠李糖脂引起的浓度。在抑制铜绿假单胞菌对聚苯乙烯表面的粘附以及抑制细菌生物膜形成方面也非常有效。这些DSD也是铜绿假单胞菌预先形成的生物膜的有效分散剂。对于具有二糖(纤维二糖或麦芽糖)立体化学和庞大的脂族链(例如3、7、11-三甲基-十二烷基)的DSD,观察到了有效的抗生物膜(抑制和分散)活性。这些有效的DSD对生物膜的抑制作用(IC50)和分散液(DC50)的最大抑制浓度为一半,与已知的针对铜绿假单胞菌的有效抗生物膜剂相当。基因报告试验表明,此类DSD的作用机理不是通过已知的铜绿假单胞菌的las或rhl群体感应系统,而是粘附素,蛋白,菌毛蛋白可能是此类分子的靶标。在自然环境下形成的生物膜是通常由共同存在于同一微环境中的细菌和真菌共同形成。因此,从治疗的观点来看,期望能够防止混合生物膜的药剂。尽管对真菌的芽孢和菌丝均无杀菌作用,但合成的DSD能够抑制真菌白色念珠菌的生物膜形成。显微镜评估显示,大多数DSD不能阻止胚芽菌丝到菌丝的形态发生。当将真菌细胞接种在测试表面五分钟内施用时,DSD可有效抑制白色念珠菌的生物膜形成。使用基于表面的分析表明,一个DSD大大降低了白色念珠菌菌丝的表面附着力。这种DSD对白色念珠菌的抗生物膜活性可能是由于它们具有防止菌丝表面粘附的能力。

著录项

  • 作者

    Singh, Nischal.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Organic chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号