首页> 外文学位 >Understanding the interplay between geometry and ultrafast dynamics in ligand field excited states of inorganic chromophores.
【24h】

Understanding the interplay between geometry and ultrafast dynamics in ligand field excited states of inorganic chromophores.

机译:了解无机发色团的配体场激发态的几何结构和超快速动力学之间的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

After photoexcitation, the relaxation dynamics between excited states of a molecule are governed by both the energies and displacement of these states. For transition metal complexes in particular, ligand modification (via electron withdrawing substituents, electron donating substituents, aromatic substituents, etc) to alter the energetics of the excited states has been well studied. Recently, interest in the displacement of these surfaces from the ground state and the geometric ramifications of this displacement have spurred many studies in several research groups. Here, ligand modifications are made to modify molecular distortions (i.e. displacement), rather than the energetics.;The research presented in this thesis focuses on intersystem crossing processes in electronically simple chromium(III) compounds. With only a few excited states accessible after visible excitation, interpretation of the excited state dynamics is significantly simplified. Ligand substitution and its effect on the kinetics of the system have been studied using ultrafast transient absorption spectroscopy with ~50 fs pulses. The first study presented in this work focuses on identifying the molecular vibrations occurring immediately after excitation and how those motions facilitate intersystem crossing. The second study presented here focuses on modulating the energetics, not through ligand substitution, but with high (25 T) magnetic fields. Over the course of pursuing these measurements, various instrumental and software advances were necessary to both collect and analyze the data. These advancements, along with the findings from both studies, are the focus of the discussions herein.
机译:光激发后,分子激发态之间的弛豫动力学受这些态的能量和位移支配。特别是对于过渡金属配合物,已经对配体改性(通过吸电子取代基,给电子取代基,芳族取代基等)进行改性以改变激发态的能量进行了研究。近来,人们对这些表面相对于基态的位移的兴趣以及这种位移的几何后果激发了多个研究小组的许多研究。在这里,进行配体修饰是为了修饰分子变形(即位移),而不是能量学。;本论文提出的研究集中于电子简单铬(III)化合物的系统间穿越过程。可见激发后只有少数激发态可访问,大大简化了对激发态动力学的解释。已使用约50 fs脉冲的超快速瞬态吸收光谱研究了配体取代及其对系统动力学的影响。这项工作中提出的第一个研究重点是确定激发后立即发生的分子振动,以及这些运动如何促进系统间交叉。本文介绍的第二项研究重点在于调节能量,而不是通过配体取代,而是使用高(25 T)磁场。在进行这些测量的过程中,需要各种仪器和软件改进来收集和分析数据。这些进展以及两项研究的发现都是本文讨论的重点。

著录项

  • 作者

    Foszcz, Eileen Dixon.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Inorganic chemistry.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 291 p.
  • 总页数 291
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:27

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号