首页> 外文学位 >Bond dynamics, microstructure, and rheology of colloidal gels.
【24h】

Bond dynamics, microstructure, and rheology of colloidal gels.

机译:胶体凝胶的键动力学,微观结构和流变性。

获取原文
获取原文并翻译 | 示例

摘要

This thesis introduces a new model colloidal gel for measuring particle interactions, microstructure, and rheology. The results from these measurements are analyzed to quantitatively predict the elastic modulus from the particle bond stiffness and microstructure.;Many experimental model gels typically have a refractive index and density matched solvent that allow for confocal microscopy and rheometry experiments for studying the gel microstructure and bulk rheological properties of industrial relevance. In this work, a model gel is created by suspending fluorescent poly(12-hydroxysteric acid) (PHSA) stabilized poly(methyl methacrylate) (PMMA) particles in cyclohexane and cyclohexyl bromide with polystyrene depletant to induce an interparticle attraction. The solvent mixture is optimized in this depletion gel to provide the refractive index contrast needed for optical trapping without greatly diminishing the confocal imaging resolution. Optical trapping provides the ability to relate gel rheology to the dynamics of individual bonds and interparticle forces. Therefore, this model gel is unique because particle-level interactions, microstructure, and bulk rheology data can all be obtained from one set of materials.;Optical tweezer experiments are used to directly measure the rupture forces between particles in this model system. Because the rupturing is controlled by thermally activated kinetics, there is a force distribution that describes the rupturing at each depletant concentration. A model is also developed that predicts the rupture force distributions based on a known interaction potential and the load rate being applied to the particle bond. Using a combined Derjaguin-Landau-Verwey-Overbeek (DLVO) and Asakura and Oosawa depletion potential, the model predictions agree with the experimental results, confirming that this potential describes the particle interactions.;The confirmed interaction potential is then used to calculate the bond rigidity and combined with structural information from confocal microscopy and measured elastic moduli of depletion gels. The results from these three experiments can be input into a model that assumes the network propagates elasticity over the characteristic cluster length scale in the gel structure and the volume fraction of clusters in the gel to calculate the elastic modulus. The cluster volume fraction and bulk particle volume fraction are related to the volume fraction of particles in a cluster, which can be used to map these samples onto the adhesive hard sphere phase diagram. The results suggest that the arrest line is an extension of the attractive glass line into the metastable binodal region, and these depletion gels are forming through the mechanism of arrested phase separation.;Finally, a layer-by-layer (LBL) synthesis is developed to produce silica nanoshells for a second model system that is compatible with optical trapping active microrheology experiments. The nanoshells are synthesized by depositing silica onto a cationic polystyrene template using a modified Stober synthesis and then calcining the particles to remove the polystyrene core. The nanoshells are robust enough to withstand additional functionalization as demonstrated by grafting octadecyl chains to the surface to make them organophilic or by adding a layer of fluorescent silica to aid in visualization. Spectrophotometry and conductivity measurements are used to study the rates at which water, ethanol, and aqueous sucrose solution (60% w/w) permeate the nanoshells. The different filling rates can be utilized to density-match the particles in the 60% sucrose solution. This neutrally buoyant suspension can then be used in active microrheology experiments to measure the suspension viscosity. (Abstract shortened by UMI.).
机译:本文介绍了一种用于测量颗粒相互作用,微观结构和流变性的新型胶体凝胶。分析这些测量的结果以从颗粒键的刚度和微观结构定量预测弹性模量。;许多实验模型凝胶通常具有折射率和密度匹配的溶剂,可以进行共聚焦显微镜和流变学实验,以研究凝胶的微观结构和体积流变性质具有工业意义。在这项工作中,通过将荧光聚(12-羟基硬脂酸)(PHSA)稳定化的聚(甲基丙烯酸甲酯)(PMMA)颗粒悬浮在环己烷和环己基溴化物中并与聚苯乙烯贫化相结合,以诱导颗粒间吸引力,从而制成模型凝胶。在此耗尽凝胶中优化了溶剂混合物,以提供光学捕获所需的折射率对比,而不会大大降低共焦成像分辨率。光学捕获提供了将凝胶流变学与单个键和粒子间作用力的动力学相关联的能力。因此,这种模型凝胶之所以独特,是因为可以从一组材料中获得颗粒级的相互作用,微观结构和整体流变学数据。光学镊子实验直接用于测量该模型系统中颗粒之间的断裂力。因为破裂是由热活化动力学控制的,所以存在一种力分布,该力分布描述了每种耗尽浓度下的破裂。还开发了一种模型,该模型基于已知的相互作用势和施加到粒子键的载荷速率来预测断裂力分布。使用结合的Derjaguin-Landau-Verwey-Overbeek(DLVO)以及Asakura和Oosawa耗竭势,模型预测与实验结果相符,从而证实了该势能描述了粒子之间的相互作用。刚性,并结合了共聚焦显微镜的结构信息和耗尽凝胶的弹性模量。这三个实验的结果可以输入到一个模型中,该模型假设网络在凝胶结构中的特征簇长度尺度上传播弹性,并在凝胶中簇的体积分数传播以计算弹性模量。团簇体积分数和本体颗粒体积分数与团簇中颗粒的体积分数有关,可用于将这些样品映射到粘性硬球相图上。结果表明,阻滞线是有吸引力的玻璃线延伸到亚稳态双链区,而这些耗尽凝胶是通过阻滞相分离的机理而形成的。最后,开发了逐层合成法生产用于第二个模型系统的二氧化硅纳米壳,该系统与光学捕获活性微流变学实验兼容。通过使用改良的Stober合成法将二氧化硅沉积到阳离子聚苯乙烯模板上,然后煅烧颗粒以除去聚苯乙烯核,可以合成纳米壳。纳米壳足够坚固,可以承受额外的功能化,如通过将十八烷基链接枝到表面使其具有亲有机性或通过添加荧光二氧化硅层以帮助可视化所证明的。分光光度法和电导率测量用于研究水,乙醇和蔗糖水溶液(60%w / w)渗透到纳米壳中的速率。可以利用不同的填充率使60%蔗糖溶液中的颗粒密度匹配。然后可以将这种中性浮力悬浮液用于主动微流变性实验中,以测量悬浮液的粘度。 (摘要由UMI缩短。)。

著录项

  • 作者

    Whitaker, Kathryn A.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 241 p.
  • 总页数 241
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号