首页> 外文学位 >Size-controlled synthesis of transition metal nanoparticles through chemical and photo-chemical routes.
【24h】

Size-controlled synthesis of transition metal nanoparticles through chemical and photo-chemical routes.

机译:通过化学和光化学途径大小控制合成过渡金属纳米粒子。

获取原文
获取原文并翻译 | 示例

摘要

The central objective of this work is developing convenient general procedures for controlling the formation and stabilization of nanoscale transition metal particles. Contemporary interest in developing alternative synthetic approaches for producing nanoparticles arises in large part from expanding applications of the nanomaterials in areas such as catalysis, electronics and medicine. This research focuses on advancing the existing nanoparticle synthetic routes by using a new class of polymer colloid materials as a chemical approach, and the laser irradiation of metal salt solution as a photo-chemical method to attain size and shape selectivity.;Controlled synthesis of small metal nanoparticles with sizes ranging from 1 to 5nm is still a continuing challenge in nanomaterial synthesis. This research utilizes a new class of polymer colloid materials as nano-reactors and protective agents for controlling the formation of small transition metal nanoparticles. The polymer colloid particles were formed from cross-linking of dinegatively charged metal precursors with partially protonated poly dimethylaminoethylmethacrylate (PDMAEMA). Incorporation of [PtCl6]2- species into the colloidal particles prior to the chemical reduction was effectively employed as a new strategy for synthesis of unusually small platinum nanoparticles with narrow size distributions (1.12 +/-0.25nm).;To explore the generality of this approach, in a series of proof-of-concept studies, this method was successfully employed for the synthesis of small palladium (1.4 +/-0.2nm) and copper nanoparticles (1.5 +/-0.6nm). The polymer colloid materials developed in this research are pH responsive, and are designed to self-assemble and/or disassemble by varying the levels of protonation of the polymer chains. This unique feature was used to tune the size of palladium nanoparticles in a small range from 1nm to 5nm. The procedure presented in this work is a new convenient room temperature route for synthesis of small nanoparticles, and its application can be extended to the formation of other transition metals and alloy nanoparticles.;This research also focuses on developing new photo-chemical routes for controlling the size and shape of the nanoparticles through high-intensity ultra-fast laser irradiation of metal salt solution. One of the core objectives of this work is to explore the special capabilities of shaped laser pulses in formation of metal nanoparticles through irradiation of the solutions by using simultaneous spatial and temporal focusing (SSTF). Femtosecond laser irradiation has not yet been widely applied for nanoparticle synthesis, and offers new regimes of energy deposition for synthesis of nanomaterials. Photo-reduction of aqueous [AuCl4]- solution to the gold nanoparticles (AuNPs) has been applied as a model process for optimizing the experimental procedures, and evaluating the potential of shaped laser pulses in the synthesis of AuNPs. Systematic manipulation of the laser parameters and experimental conditions provided effective strategies to control the size of Au nanoparticles in strong laser fields. Varying the concentration of polyethylene glycol (PEG45) as a surfactant effectively tuned the size of AuNPs from 3.9 +/-0.7nm to 11.0 +/-2.4nm, and significantly increased the rate of Au(III) reduction during irradiation. Comparative studies revealed the capability of shaped laser pulses in the generation of smaller and more uniform AuNPs (5.8 +/-1.1nm) relative to the other conventional laser irradiation methods (7.2 +/-2.9nm).;Furthermore, a new laser-assisted approach has been developed for selective formation of triangular Au nanoplates in the absence of any surfactant molecule. This method relies on rapid energy deposition by using shaped, ultra-intense laser pulses to generate Au seeds in aqueous [AuCl4]- solution, and the slow post-irradiation reduction of un-reacted [AuCl4]- species by using H2O2 as a mild reducing agent. Variation of the laser irradiation-time was found as an effective strategy to tune the morphology of Au nanomaterials from nanospheres to triangular nanoplates. The surfactant-free Au nanoplates produced in this research can be readily functionalized with a variety of target molecules or surfactants for desirable applications such as biomedicine. The concept of rapid laser processing followed by in situ chemical reduction can be expanded as a general methodology for high-yield production of nanomaterials, and provides a series of new laser dependent parameters for controlling the nanoparticle formation.
机译:这项工作的主要目标是开发方便的通用程序,以控制纳米级过渡金属颗粒的形成和稳定化。对开发用于生产纳米颗粒的替代合成方法的当代兴趣很大程度上来自于纳米材料在催化,电子和医学等领域的广泛应用。这项研究的重点是通过使用一类新型的聚合物胶体材料作为化学方法来改进现有的纳米颗粒合成路线,并以金属盐溶液的激光辐照作为一种光化学方法来达到尺寸和形状选择性的目的。尺寸范围为1至5nm的金属纳米粒子仍然是纳米材料合成中的持续挑战。这项研究利用一类新型的聚合物胶体材料作为纳米反应器和保护剂来控制小的过渡金属纳米粒子的形成。聚合物胶体颗粒是由带负电荷的金属前体与部分质子化的聚甲基丙烯酸二甲基氨基乙基酯(PDMAEMA)交联形成的。在化学还原之前将[PtCl6] 2-物种掺入胶体颗粒中被有效地用作合成具有窄尺寸分布(1.12 +/- 0.25nm)的异常小的铂纳米颗粒的新策略。这种方法在一系列概念验证研究中成功地用于合成小钯(1.4 +/- 0.2nm)和铜纳米颗粒(1.5 +/- 0.6nm)。在这项研究中开发的聚合物胶体材料具有pH响应性,并设计为通过改变聚合物链的质子化水平进行自组装和/或分解。此独特功能用于在1nm至5nm的小范围内调整钯纳米粒子的尺寸。这项工作提出的程序是一种用于合成小型纳米颗粒的新的便捷的室温路线,其应用范围可以扩展到其他过渡金属和合金纳米颗粒的形成。该研究还致力于开发新的光化学路线来控制通过金属盐溶液的高强度超快激光辐照,纳米颗粒的尺寸和形状得以改变。这项工作的核心目标之一是通过同时使用空间和时间聚焦(SSTF),通过溶液的辐照来探索成形激光脉冲在形成金属纳米颗粒时的特殊功能。飞秒激光辐照尚未广泛应用于纳米粒子合成,并为合成纳米材料提供了新的能量沉积机制。 [AuCl4]-水溶液对金纳米颗粒(AuNPs)的光还原已被用作模型程序,用于优化实验程序,并评估了AuNPs合成中成形激光脉冲的潜力。激光参数和实验条件的系统操作提供了有效的策略来控制强激光场中金纳米粒子的大小。改变作为表面活性剂的聚乙二醇(PEG45)的浓度可有效地将AuNP的尺寸从3.9 +/- 0.7nm调整到11.0 +/- 2.4nm,并显着提高照射过程中Au(III)的还原率。比较研究表明,与其他传统激光辐照方法(7.2 +/- 2.9nm)相比,成形激光脉冲具有产生更小,更均匀的AuNP(5.8 +/- 1.1nm)的能力。已经开发了一种辅助方法,用于在不存在任何表面活性剂分子的情况下选择性形成三角形Au纳米板。此方法依赖于通过使用成形的超强激光脉冲在[AuCl4]-水溶液中生成Au种子来进行快速能量沉积,以及通过使用H2O2作为温和的溶液来缓慢辐照减少未反应的[AuCl4]-物种。还原剂。发现激光照射时间的变化是一种调节金纳米材料从纳米球到三角形纳米板的形态的有效策略。这项研究中生产的无表面活性剂的Au纳米板可以很容易地用各种目标分子或表面活性剂进行功能化,以实现理想的应用,例如生物医学。快速激光加工然后原位化学还原的概念可以扩展为纳米材料高产量生产的通用方法,并为控制纳米颗粒的形成提供了一系列依赖于激光的新参数。

著录项

  • 作者

    Tangeysh, Behzad.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Physical chemistry.;Materials science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 304 p.
  • 总页数 304
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号