首页> 外文学位 >Rapid characterization of drug response using tumor-microenvironment-on-chip.
【24h】

Rapid characterization of drug response using tumor-microenvironment-on-chip.

机译:使用肿瘤微环境芯片快速表征药物反应。

获取原文
获取原文并翻译 | 示例

摘要

The use of microfluidic platforms has become an indispensable strategy to recapitulate physiological tumor microenvironment in order to describe cell and molecular biomechanics. To date, many promising early studies have characterized the role of the tumor microenvironment in cancer malignancy and investigated the efficacy of anti-cancer drugs. However, the essential in vivo conditions regulating tumor malignancy remains poorly understood. Additionally, the capability to predict the therapeutic efficacy of developed drugs is still limited. Consequently, a novel in vitro tumor model, entitled tumor-microenvironment on chip (TMOC), had been established to enable relevant in vivo tumor characterization within extracellular matrix (ECM) under physiological interstitial pressure and flow. In this study, TMOC was employed to investigate not only the role of regulation of tumor growth rate by 3D culture and interstitial flow but also the contribution of drug resistance to human tumors and drug binding, unbinding, and efflux rate constants in order to accelerate drug discovery.;First of all, we found that growth rate comparison between monolayer (2D) and TMOC (3D) reflected that the role of extracellular matrix (ECM) was significant in tumor growth rate, however, the interstitial flow available on TMOC was not induce notable differences compared to tumors cultured without any flow.;In the following study, exploring drug resistance in human cancer cells, we have observed that malignant MDA-MB-231 cells, triple negative and CD44 over-expressed human breast cancer cells were altered and became significantly resistant to doxorubicin(DOX) on TMOC compared with MCF-7 and SUM-159PT, whereas survival rate of MDA-MB-231 on 2D monolayer assays was significantly lower than MCF-7. Furthermore, in the case of DOX-loaded 250nm hyaluronic acid nanoparticles (HANP), which are designed to selectively bind to CD44 over-expressed cancer cells, the drug binding rate to MDA-MB-231 cells increased significantly compared to free DOX. Furthermore, a relatively higher drug unbinding and efflux rate was observed in DOX-HANP, accompanied by apparently higher survival rates compared to free DOX in spite of significantly more DOX-HANP accumulation in the cell area. This result infers that DOX-HANP is less able to facilitate drug binding to tumor nuclei. It may be because DOX-HANP was easily unbound from carrier protein due to its bigger size.;Overall, these results suggest that the TMOC model is able to support the improved understanding of how tumors respond to anti-cancer drugs in vivo.
机译:为了描述细胞和分子生物力学,使用微流体平台已经成为概括生理肿瘤微环境的必不可少的策略。迄今为止,许多有前途的早期研究已经表征了肿瘤微环境在癌症恶性肿瘤中的作用,并研究了抗癌药物的功效。然而,调节肿瘤恶性的基本体内条件仍然知之甚少。另外,预测已开发药物的治疗功效的能力仍然有限。因此,已经建立了一种新的体外肿瘤模型,称为肿瘤微环境芯片(TMOC),以能够在生理间质压力和血流下在细胞外基质(ECM)内进行相关的体内肿瘤表征。在这项研究中,TMOC不仅用于研究3D培养和间质流对肿瘤生长速率的调节作用,而且还研究了耐药性对人肿瘤的作用以及药物结合,不结合和流出速率常数,以加速药物的生长首先,我们发现单层(2D)和TMOC(3D)之间的生长速率比较反映出细胞外基质(ECM)在肿瘤生长速率中的作用显着,但是,TMOC上可用的间质流并不明显与不流动的肿瘤相比,诱导的显着差异。;在以下研究中,探索人癌细胞的耐药性,我们观察到恶性MDA-MB-231细胞,三阴性和CD44过表达的人乳腺癌细胞发生了改变与MCF-7和SUM-159PT相比,在TMOC上对阿霉素(DOX)具有明显的抗性,而在2D单层检测中MDA-MB-231的存活率则明显低于MCF-7。此外,在DOX负载的250nm透明质酸纳米颗粒(HANP)可以选择性地与CD44过表达的癌细胞结合的情况下,与MDA-MB-231细胞的药物结合率比游离DOX显着提高。此外,在DOX-HANP中观察到相对较高的药物解结合和外排率,尽管在细胞区域中有明显更多的DOX-HANP积累,但与游离DOX相比,其存活率明显更高。该结果表明DOX-HANP不太能够促进药物与肿瘤核的结合。可能是因为DOX-HANP由于其较大的尺寸而很容易与载体蛋白脱钩。总体而言,这些结果表明TMOC模型能够支持对肿瘤在体内如何响应抗癌药的进一步了解。

著录项

  • 作者

    Shin, Kyeonggon.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biomedical engineering.;Pharmaceutical sciences.
  • 学位 M.S.M.E.
  • 年度 2015
  • 页码 57 p.
  • 总页数 57
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号