首页> 外文学位 >Understanding Spatial and Temporal Organization of Cyanobacteria for Synthetic Biology Applications.
【24h】

Understanding Spatial and Temporal Organization of Cyanobacteria for Synthetic Biology Applications.

机译:了解用于合成生物学应用的蓝细菌的时空组织。

获取原文
获取原文并翻译 | 示例

摘要

The goal of synthetic biology is to engineer biological systems in order to solve industrial and medical challenges, as well as to learn about these systems by building. Cyanobacteria, a chassis for such engineering, are major players in the global carbon cycle and their ability to fix carbon has been harnessed to produce various chemicals, including biofuels. In addition, cyanobacteria possess remarkable spatial and temporal organization in the cell. In this dissertation, I monitor, break down, and rebuild the molecular components necessary for this spatial and temporal coordination of cyanobacterial growth. These studies give us a better understanding of basic cyanobacterial biology and enable the further development of cyanobacteria for synthetic biology applications. In chapter 1, I describe the arrangement of the cyanobacterial chromosomes over time, showing the mechanisms regulating chromosome duplication and segregation. The polyploid nature of cyanobacteria make this study relevant to their efficient genome engineering. In chapter 2, I elucidate the assembly of the primary carbon fixation machinery, carboxysomes. I show that the internal cargo of carboxysomes, RuBisCO, seeds assembly, followed by the recruitment of shell proteins, which form a solvent-protected microenvironment. Finally, in chapter 3, I engineer a synthetic circadian clock from cyanobacterial components in a heterologous organism, E. coli. I demonstrate the clock's modularity and pave the way for its use in medical and industrial applications. Taken together, this work furthers our understanding of cyanobacterial physiology and forms a foundation for their efficient engineering to increase their carbon fixation capabilities. Furthermore, the fundamental spatial and temporal organization strategies elucidated here can serve as inspiration for the engineering of heterologous systems that can serve similar purposes in different contexts.
机译:合成生物学的目的是设计生物系统,以解决工业和医学难题,并通过构建来了解这些系统。蓝细菌是此类工程的基础,是全球碳循环的主要参与者,其固定碳的能力已被用来生产包括生物燃料在内的各种化学物质。另外,蓝细菌在细胞中具有显着的时空组织。在本文中,我监测,分解和重建了蓝藻生长在空间和时间上协调所必需的分子成分。这些研究使我们对基本的蓝细菌生物学有了更好的了解,并使蓝细菌能够进一步发展用于合成生物学应用。在第一章中,我描述了蓝细菌染色体随时间的排列,展示了调节染色体复制和分离的机制。蓝细菌的多倍体性质使这项研究与其有效的基因组工程有关。在第2章中,我将阐述主要的碳固定机制羧基体的组装。我证明了羧基糖体的内部货物,RuBisCO,种子组装,然后募集了壳蛋白,这些壳蛋白形成了溶剂保护的微环境。最后,在第3章中,我用异源生物大肠杆菌中的蓝细菌成分设计了一个生物钟。我演示了时钟的模块化,并为其在医疗和工业应用中的使用铺平了道路。两者合计,这项工作加深了我们对蓝细菌生理学的理解,并为他们进行有效工程以提高其碳固定能力的基础。此外,这里阐述的基本时空组织策略可以为异系统的工程设计提供灵感,这些异系统可以在不同的环境中实现相似的目的。

著录项

  • 作者

    Chen, Anna Hang.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Microbiology.;Biomedical engineering.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号