首页> 外文学位 >The rotation and translation of non-spherical particles in homogeneous isotropic turbulence.
【24h】

The rotation and translation of non-spherical particles in homogeneous isotropic turbulence.

机译:非球形粒子在均质各向同性湍流中的旋转和平移。

获取原文
获取原文并翻译 | 示例

摘要

The motion of particles suspended in environmental turbulence is relevant to many scientific fields, from sediment transport to biological interactions to underwater robotics. At very small scales and simple shapes, we are able to completely mathematically describe the motion of inertial particles; however, the motion of large aspherical particles is significantly more complex, and current computational models are inadequate for large or highly-resolved domains. Therefore, we seek to experimentally investigate the coupling between freely suspended particles and ambient turbulence. A better understanding of this coupling will inform not only engineering and physics, but the interactions between small aquatic organisms and their environments. In the following pages, we explore the roles of shape and buoyancy on the motion of passive particles in turbulence, and allow these particles to serve as models for meso-scale aquatic organisms.;We fabricate cylindrical and spheroidal particles and suspend them in homogeneous, isotropic turbulence that is generated via randomly-actuated jet arrays. The particles are fabricated with agarose hydrogel, which is refractive-index-matched to the surrounding fluid (water). Both the fluid and the particle are seeded with passive tracers, allowing us to perform Particle Image Velocimetry (PIV) simultaneously on the particle and fluid phase. To investigate the effects of shape, particles are fabricated at varying aspect ratios; to investigate the effects of buoyancy, particles are fabricated at varying specific gravities. Each particle type is freely suspended at a volume fraction of Ф=0.1%, for which four-way coupling interactions are negligible. The suspended particles are imaged together with the surrounding fluid and analyzed using stereoscopic PIV, which yields three velocity components in a two-dimensional measurement plane. Using image thresholding, the results are separated into simultaneous fluid-phase and solid-phase velocity fields.;Using these simultaneous measurements, we examine particles' turbulent slip velocity and compare it to particles' quiescent settling velocity, which we measure directly. We observe that the slip velocity is strongly reduced relative to the quiescent case, and explore various mechanisms of particle loitering in turbulence. We further explore the relationship between the instantaneous particle velocity and the instantaneous fluid velocity, and develop a linear parametrization. By comparing our experimental data to a simple one-dimensional flow in the context of this parametrization, we elucidate aspects of slip velocity that are unique to turbulence.;We obtain the particles' angular velocity by applying the solid-body rotation equation to velocity measurements at points inside the particle. We find that the expected value of angular velocity magnitude does not vary significantly with particle aspect ratio, as long as particles are nearly neutrally buoyant. Stronger effects on rotation are found for more negatively-buoyant particles. We also investigate particles' inheritance of vorticity from turbulent velocity fields, and find that particle rotation can be predicted by applying a spatial filter to fluid-phase vorticity.;The results of this study will allow us to more accurately predict the motion of aspherical particles, giving new insights into oceanic carbon cycling, industrial processes, and other important topics. This analysis will also shed light onto biological questions of navigation, reproduction, and predator-prey interaction by quantifying the turbulence-driven behavior of meso-scale aquatic organisms, allowing researchers to sift out passive vs. active effects in a behaving organism. Lastly, processes that are directly dependent on particle dynamics (e.g., sediment transport, industrial processes) will be informed by our results.
机译:悬浮在环境湍流中的粒子的运动与许多科学领域有关,从沉积物传输到生物相互作用再到水下机器人。在非常小的比例和简单的形状下,我们能够完全数学上描述惯性粒子的运动;然而,大的非球面粒子的运动要复杂得多,并且当前的计算模型不足以解决大的或高度分辨的区域。因此,我们试图通过实验研究自由悬浮颗粒与环境湍流之间的耦合。更好地理解这种耦合将不仅为工程和物理学提供信息,而且还将为小型水生生物及其环境之间的相互作用提供信息。在接下来的几页中,我们将探讨形状和浮力在湍流中被动粒子运动中的作用,并允许这些粒子充当中尺度水生生物的模型。我们制作了圆柱状和球形的粒子,并将它们悬浮在均匀的水中,通过随机驱动的射流阵列产生的各向同性湍流。这些颗粒是用琼脂糖水凝胶制成的,其折射率与周围的流体(水)相匹配。流体和粒子都通过无源示踪剂进行播种,这使我们能够同时在粒子和流体相上执行粒子图像测速(PIV)。为了研究形状的影响,以不同的长宽比制造了颗粒。为了研究浮力的影响,在不同的比重下制造了颗粒。每种颗粒类型以= 0.1%的体积分数自由悬浮,对于这些颗粒,四向偶联相互作用可忽略不计。悬浮的粒子与周围的流体一起成像,并使用立体PIV分析,该立体PIV在二维测量平面中产生三个速度分量。使用图像阈值处理,将结果分为同时的液相和固相速度场。使用这些同时进行的测量,我们检查了粒子的湍流滑移速度,并将其与直接测量的粒子的静态沉降速度进行了比较。我们观察到相对于静态情况,滑移速度大大降低,并探索了湍流中颗粒游荡的各种机制。我们进一步探索瞬时粒子速度和瞬时流体速度之间的关系,并发展出线性参数化。通过在这种参数化的情况下将我们的实验数据与简单的一维流进行比较,我们阐明了湍流特有的滑移速度方面。我们通过将固体旋转方程应用于速度测量来获得粒子的角速度。在粒子内部的点。我们发现,只要粒子接近中性浮力,角速度大小的期望值就不会随粒子长宽比而显着变化。对于更多的负浮力颗粒,发现对旋转的影响更大。我们还研究了湍流场中粒子对涡度的继承,发现可以通过将空间滤波器应用于流体相涡度来预测粒子的旋转。本研究的结果将使我们能够更准确地预测非球面粒子的运动,提供有关海洋碳循环,工业过程和其他重要主题的新见解。这项分析还将通过量化中尺度水生生物的湍流驱动行为,揭示出航行,繁殖和食肉动物与猎物之间相互作用的生物学问题,从而使研究人员能够筛选出行为生物中的被动与主动作用。最后,我们的结果将为直接依赖于粒子动力学的过程(例如,沉积物运输,工业过程)提供信息。

著录项

  • 作者

    Byron, Margaret.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Environmental engineering.;Physics.;Biomechanics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号