首页> 外文学位 >Electron Transfer Kinetics on Non-Precious Group Metal Catalyst in Non-Aqueous Electrolytes for Li-air Batteries.
【24h】

Electron Transfer Kinetics on Non-Precious Group Metal Catalyst in Non-Aqueous Electrolytes for Li-air Batteries.

机译:锂空气电池非水电解液中非贵金属催化剂上的电子转移动力学。

获取原文
获取原文并翻译 | 示例

摘要

For a clean, sustainable, and secure energy future, rechargeable Li-air batteries attract a great deal of interest for the next generation energy storage and conversion devices because of their extremely high theoretical energy density (up to 2--3 kWh/kg). This technology promises to bring the electrical vehicles to the market with a car that can travel 500 miles range on a single charge, which is roughly 10 times higher than current state of the art Li-ion batteries. However, the practical realization of this technology is still hindered by many challenges. One of the most challenging tasks in developing Li-air batteries is the lack of fundamental understanding of oxygen reduction reaction (ORR) and oxygen evaluation reaction (OER) on the oxygen electrode, especially when catalysts are used. The role of the catalytic material and the electrolyte must also be understood for improving the stability, kinetics, and activity of the batteries. In addition, for Li-air batteries to be economically competitive, inexpensive non-precious group metal catalysts must be developed.;Chapter 1 provides an introduction to current state of the art energy storage devices and their energy density comparison with Li-air batteries. An introduction to Li-air batteries, and the limiting factors for the performance of a reversible Li-air battery is provided. In light of the hard soft acid base (HSAB) theory, the effect of the electrolyte composition on battery performance is discussed. Inner & outer sphere electron transfer kinetics is discussed for supported catalytic systems. This chapter also covers the literature review on the non-precious metal catalysts for Li-air batteries.;Chapter 2 discusses the performance of a Fe-based metal-organic framework (MOF) catalyst for non-aqueous Li-air batteries. The synthesis and characterization of the Fe-based MOF catalyst are described. The effect of the MOF catalyst on the electron transfer kinetics for ORR studied in two different non-aqueous solvents, namely dimethyl sulfoxide (DMSO), tetraethylene glycol dimethyl ether (TEGDME) are described. The results indicate that, in high-donor number solvents such as DMSO, the solvent acts as a catalyst and promotes outer sphere electron transfers. However, in the presence of catalyst the system promotes inner sphere electron transfer occurring concurrently with outer sphere transfer via Fe active centers of the catalyst. This slightly increases the ORR activity of the system. On the other hand, in low-donor number solvents such as TEGDME, the catalyst significantly changes the ORR activity from the inner Helmholtz layer. These results are discussed according to hard soft acid base (HSAB) theory. In addition, a three-electrode electrochemical cell was designed, fabricated and used for the in-situ Raman spectroscopy observation of reduction products. The reduction products such as Li2O2 and LiO2 and the active center of the catalyst were identified in DMSO.;Chapter 3 provides a conclusion and offers insights toward future directions for the investigation of the non-precious catalysts for Li-air battery applications and their in-situ spectroscopic observation.
机译:为了实现清洁,可持续和安全的能源未来,可充电锂空气电池由于其极高的理论能量密度(高达2--3 kWh / kg)吸引了下一代能量存储和转换设备的巨大兴趣。 。这项技术有望将电动汽车推向市场,一次充电即可行驶500英里,这比目前最先进的锂离子电池高出约10倍。但是,该技术的实际实现仍然受到许多挑战的阻碍。开发锂空气电池时最具挑战性的任务之一是缺乏对氧电极上的氧还原反应(ORR)和氧评估反应(OER)的基本了解,尤其是在使用催化剂时。还必须理解催化材料和电解质的作用,以改善电池的稳定性,动力学和活性。另外,为了使锂空气电池在经济上具有竞争力,必须开发廉价的非贵金属催化剂。第1章介绍了现有技术的储能装置及其与锂空气电池的能量密度比较。提供了锂空气电池的介绍,以及可逆锂空气电池性能的限制因素。根据硬质软酸碱(HSAB)理论,讨论了电解质组合物对电池性能的影响。讨论了支撑催化体系的内外球电子转移动力学。本章还涵盖了用于锂空气电池的非贵金属催化剂的文献综述。第二章讨论了用于非水锂空气电池的铁基金属有机骨架(MOF)催化剂的性能。描述了铁基MOF催化剂的合成和表征。描述了MOF催化剂对在两种不同的非水溶剂即二甲亚砜(DMSO),四甘醇二甲醚(TEGDME)中研究的ORR的电子转移动力学的影响。结果表明,在高供体数的溶剂(例如DMSO)中,该溶剂充当催化剂并促进外球电子转移。然而,在催化剂的存在下,该系统促进经由催化剂的Fe活性中心与外球转移同时发生的内球电子转移。这会稍微增加系统的ORR活动。另一方面,在低供体数的溶剂(例如TEGDME)中,催化剂显着改变了内亥姆霍兹层的ORR活性。根据硬质软酸碱(HSAB)理论讨论了这些结果。此外,设计,制造了三电极电化学电池,并将其用于还原产物的原位拉曼光谱观察。在DMSO中确定了诸如Li2O2和LiO2的还原产物以及催化剂的活性中心。第三章提供了结论,并为研究用于锂空气电池应用的非贵重催化剂及其应用提供了见识。原位光谱观察。

著录项

  • 作者

    Yilmaz, Gizem.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Physical chemistry.;Energy.
  • 学位 M.S.
  • 年度 2015
  • 页码 47 p.
  • 总页数 47
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号