首页> 外文学位 >The reduction of nickel doped fluorite and perovskite structured oxides.
【24h】

The reduction of nickel doped fluorite and perovskite structured oxides.

机译:镍掺杂萤石和钙钛矿结构氧化物的还原。

获取原文
获取原文并翻译 | 示例

摘要

A powerful technique for preparing metal-oxide nanocomposites is internal reduction. The selective reduction of the least redox stable species creates a distribution of fine metallic precipitates in the microstructure, resulting in unique electrochemical and functional properties. Transition metal dopants, when added to fluorite and perovskite structured zirconia-based ceramics, reduce more easily in low oxygen partial pressure than constituents of the parent lattice. Nickel oxide (NiO) dopant is commonly added to ceramics that are used in fuel cells, catalysis, nanoionic devices, and many other electrochemical applications to aid microstructure development. An improved understanding of the mechanism for internal reduction of NiO-doped oxides will enable greater nanostructural control and will lead to smart engineering of nanoionic and catalytic devices.;Specifically the studies in this dissertation evaluate the microstructural influences on the overall internal reduction mechanism and reaction kinetics. Microstructural features have unique local chemistry compared to the bulk which can influence the mass transport by creating chemical and electrical gradients. The baseline microstructures are heavily characterized by this work to understand the distribution of NiO dopant prior to internal reduction. The current model describing the mechanism of internal reduction only explains mass transport in single crystals, neglecting space charge effects, and assumes that oxygen species are immobile. To overcome these limitations, internal reduction mechanisms are evaluated in polycrystalline NiO-doped YSZ with some porosity. It is possible to distinguish stages of reduction as they relate to microstructural features through systemic experimentation by varying temperature, oxygen partial pressure, and soak time. Each stage is described by distinct kinetics and magnetic signatures, showing that it is possible to tailor metal-oxide nanocomposites with nanoscale control of features. Redox cycling is performed to describe the reversibility and stability of the reduced microstructure.;The solubility of NiO dopant in BZY powders and pellets was examined prior to reduction studies. As a result, this dissertation characterizes the distribution and excess barium nickel oxide phases in NiO-doped BZY. Reduction experiments on NiO-doped BZY powders are used to show that chemical segregation during particle growth leads to selective reduction behavior. By varying the amount of NiO dopant, it is possible to ratchet the amount of excess barium nickel oxide in powders. Although the internal reduction mechanism is not described by this work, a foundation for magnetic characterization of NiO-doped BZY is provided for future studies.
机译:制备金属氧化物纳米复合材料的一项有效技术是内部还原。选择性还原最少的氧化还原稳定物质会在微结构中形成精细的金属沉淀物分布,从而产生独特的电化学和功能特性。当过渡金属掺杂剂添加到萤石和钙钛矿结构的氧化锆基陶瓷中时,在低氧分压下比母体晶格的组分更容易降低。氧化镍(NiO)掺杂剂通常添加到用于燃料电池,催化,纳米离子设备和许多其他电化学应用的陶瓷中,以帮助微结构开发。更好地理解NiO掺杂氧化物的内部还原机理,将可以实现更好的纳米结构控制,并可以对纳米离子和催化装置进行智能工程设计。具体而言,本论文的研究评估了微观结构对整体内部还原机理和反应的影响。动力学。与整体相比,微结构特征具有独特的局部化学性质,可以通过产生化学和电梯度来影响质量传输。这项工作对基线微结构进行了重大表征,以了解内部还原之前NiO掺杂剂的分布。当前描述内部还原机理的模型仅解释了单晶中的质量传输,忽略了空间电荷效应,并假设氧是不可移动的。为了克服这些限制,在具有一定孔隙率的多晶掺NiO的YSZ中评估了内部还原机理。通过改变温度,氧气分压和浸泡时间,通过系统实验,可以区分还原阶段与微结构特征的关系。每个阶段均由独特的动力学和磁学特征描述,表明可以通过纳米尺度的特征控制来定制金属氧化物纳米复合材料。进行氧化还原循环以描述还原的微结构的可逆性和稳定性。在还原研究之前,检查了NiO掺杂剂在BZY粉末和颗粒中的溶解度。结果,本文表征了掺杂NiO的BZY中钡镍氧化物相的分布和过量。 NiO掺杂的BZY粉末的还原实验用于表明颗粒生长过程中的化学偏析会导致选择性还原行为。通过改变NiO掺杂剂的量,有可能使粉末中多余的氧化钡镍棘轮化。尽管内部还原机理未在此工作中描述,但为NiO掺杂的BZY的磁性表征奠定了基础,以供将来研究之用。

著录项

  • 作者

    Morrissey, Amy.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号