首页> 外文学位 >Physical mechanisms affecting hot carrier-induced degradation in gallium nitride HEMTs.
【24h】

Physical mechanisms affecting hot carrier-induced degradation in gallium nitride HEMTs.

机译:影响热载流子诱导的氮化镓HEMT降解的物理机制。

获取原文
获取原文并翻译 | 示例

摘要

Gallium Nitride or GaN-based high electron mobility transistors (HEMTs) is currently the most promising device technology in several key military and civilian applications due to excellent high-power as well as high-frequency performance. Even though the performance figures are outstanding, GaN-based HEMTs are not as mature as some competing technologies, which means that establishing the reliability of the technology is important to enable use in critical applications. The objective of this research is to understand the physical mechanisms affecting the reliability of GaN HEMTs at moderate drain biases (typically VDS < 30 V in the devices considered here). The degradation in device performance is believed to be due to the formation or modification of charged defects near the interface by hydrogen depassivation processes (due to electron-activated hydrogen removal) from energetic carriers. A rate-equation describing the defect generation process is formulated based on this assumption. A combination of ensemble Monte-Carlo (EMC) simulation statistics, ab-initio density functional theory (DFT) calculations, and accelerated stress experiments is used to relate the candidate defects to the overall degradation behavior (VT and gm). The focus of this work is on the 'semi-ON' mode of transistor operation in which the degradation is usually observed to be at its highest. This semi-ON state is reasonably close to the biasing region of class-AB high power amplifiers, which are popular because of the combination of high efficiency and low distortion that is associated with this configuration. The carrier-energy distributions are obtained using an EMC simulator that was developed specifically for III-V HFETs. The rate equation is used to model the degradation at different operating conditions as well as longer stress times from the result of one short duration stress test, by utilizing the carrier-energy distribution obtained from EMC simulations for one baseline condition. This work also attempts to identify the spatial location of these defects, and how this impacts the V T shift and gm degradation of the devices.
机译:由于出色的高功率和高频性能,氮化镓或基于GaN的高电子迁移率晶体管(HEMT)当前是几种关键的军事和民用应用中最有前途的器件技术。尽管性能指标非常出色,但基于GaN的HEMT并不像某些竞争技术那么成熟,这意味着确立该技术的可靠性对于在关键应用中使用至关重要。这项研究的目的是了解在中等漏极偏置(此处考虑的器件中,VDS <30 V)下影响GaN HEMT可靠性的物理机制。据信器件性能的下降是由于通过从高能载体中进行的氢钝化过程(由于电子活化的氢去除)在界面附近形成或修饰了带电缺陷。基于该假设,制定了描述缺陷产生过程的速率方程。结合使用整体蒙特卡洛(EMC)模拟统计数据,从头算密度函数理论(DFT)计算和加速应力实验,将候选缺陷与整体退化行为(VT和gm)联系起来。这项工作的重点是晶体管的“半导通”模式,在这种模式下,通常观察到其劣化最大。这种半导通状态合理地接近AB类高功率放大器的偏置区域,由于与该配置相关的高效率和低失真的结合,这种半导通状态很受欢迎。使用专门为III-V HFET开发的EMC仿真器获得载流子能量分布。通过利用从EMC仿真中获得的一种基线条件下的载流子能量分布,可以使用速率方程对一个短期应力测试的结果在不同的工作条件下以及更长的应力时间进行建模。这项工作还试图确定这些缺陷的空间位置,以及这如何影响器件的V T偏移和gm退化。

著录项

  • 作者

    Mukherjee, Shubhajit.;

  • 作者单位

    Vanderbilt University.;

  • 授予单位 Vanderbilt University.;
  • 学科 Materials science.;Physics.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号