首页> 外文学位 >Performance quantification of heliogyro solar sails using structural, attitude, and orbital dynamics and control analysis.
【24h】

Performance quantification of heliogyro solar sails using structural, attitude, and orbital dynamics and control analysis.

机译:使用结构,姿态和轨道动力学以及控制分析对太阳陀螺太阳帆的性能进行量化。

获取原文
获取原文并翻译 | 示例

摘要

Solar sails enable or enhance exploration of a variety of destinations both within and without the solar system. The heliogyro solar sail architecture divides the sail into blades spun about a central hub and centrifugally stiffened. The resulting structural mass savings can often double acceleration verses kite-type square sails of the same mass. Pitching the blades collectively and cyclically, similar to a helicopter, creates attitude control moments and vectors thrust. The principal hurdle preventing heliogyros' implementation is the uncertainty in their dynamics. This thesis investigates attitude, orbital and structural control using a combination of analytical studies and simulations. Furthermore, it quantifies the heliogyro's ability to create attitude control moments, change the thrust direction, and stably actuate blade pitch. This provides engineers a toolbox from which to estimate the heliogyro's performance and perform trades during preliminary mission design. It is shown that heliogyros can create an attitude control moment in any direction from any orientation. While their large angular momentum limits attitude slewing to only a few degrees per hour, cyclic blade pitching can slew the thrust vector within a few minutes. This approach is only 13% less efficient than slewing a square sail during Earth escape, so it does not offset the overall acceleration benefits of heliogyros. Lastly, a root pitch motor should be able to settle torsional disturbances within a few rotations and achieve thrust performance comparable to that of flat blades. This work found no significant dynamic hurdles for heliogyros, and it provides key insight into their practical capabilities and limitations for future mission designers.
机译:太阳帆可以在或不在太阳系内实现或增强对各种目的地的探索。日式陀螺太阳能帆结构将帆分成围绕中心轮毂旋转并离心强化的叶片。节省下来的结构质量通常会使同质量的风筝式方帆的加速度加倍。与直升飞机类似,共同和周期性地倾斜桨叶会产生姿态控制力矩和矢量推力。防止太阳锥陀螺实施的主要障碍是其动力学的不确定性。本文结合分析研究和模拟研究了姿态,轨道和结构控制。此外,它量化了直升机的陀螺仪产生姿态控制力矩,改变推力方向以及稳定地操纵桨距的能力。这为工程师提供了一个工具箱,通过该工具箱可以在初步任务设计期间估算直升机的性能并进行交易。结果表明,Heliogyros可以从任何方向在任何方向上创建一个姿态控制力矩。虽然它们的大角动量将姿态仅每小时旋转几度,但周期性的叶片俯仰可以在几分钟内使推力矢量回转。这种方法的效率仅比逃生期间摆正方帆的效率低13%,因此,它不能抵消太阳伞陀螺的总体加速优势。最后,根距电动机应该能够在几转内解决扭转干扰,并获得与扁平叶片相当的推力性能。这项工作没有发现日式陀螺的重大动态障碍,它为未来的任务设计者提供了其实际能力和局限性的关键见解。

著录项

  • 作者

    Guerrant, Daniel Vernon.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号