首页> 外文学位 >Novel method of manufacturing hydrogen storage materials combining with numerical analysis based on discrete element method.
【24h】

Novel method of manufacturing hydrogen storage materials combining with numerical analysis based on discrete element method.

机译:结合基于离散元方法的数值分析制造储氢材料的新方法。

获取原文
获取原文并翻译 | 示例

摘要

High efficiency hydrogen storage method is significant in development of fuel cell vehicle. Seeking for a high energy density material as the fuel becomes the key of wide spreading fuel cell vehicle. LiBH4 + MgH 2 system is a strong candidate due to their high hydrogen storage density and the reaction between them is reversible. However, LiBH4 + MgH 2 system usually requires the high temperature and hydrogen pressure for hydrogen release and uptake reaction. In order to reduce the requirements of this system, nanoengineering is the simple and efficient method to improve the thermodynamic properties and reduce kinetic barrier of reaction between LiBH4 and MgH2.;Based on ab initio density functional theory (DFT) calculations, the previous study has indicated that the reaction between LiBH4 and MgH2 can take place at temperature near 200°C or below. However, the predictions have been shown to be inconsistent with many experiments. Therefore, it is the first time that our experiment using ball milling with aerosol spraying (BMAS) to prove the reaction between LiBH4 and MgH2 can happen during high energy ball milling at room temperature. Through this BMAS process we have found undoubtedly the formation of MgB 2 and LiH during ball milling of MgH2 while aerosol spraying of the LiBH4/THF solution. Aerosol nanoparticles from LiBH 4/THF solution leads to form Li2B12H12 during BMAS process. The Li2B12H12 formed then reacts with MgH2 in situ during ball milling to form MgB 2 and LiH.;Discrete element modeling (DEM) is a useful tool to describe operation of various ball milling processes. EDEM is software based on DEM to predict power consumption, liner and media wear and mill output. In order to further improve the milling efficiency of BMAS process, EDEM is conducted to make analysis for complicated ball milling process. Milling speed and ball's filling ratio inside the canister as the variables are considered to determine the milling efficiency. The average and maximum speed of balls is critical to affect the collision force among balls. High collision force can be achieved by applying large torque on the milling shaft. The high milling speed and large ball's filling ratio increase the torque and average speed of balls. However, the high average speed and large torque lead to non-uniformed milled material. Therefore, appropriate milling speed and ball's filling ratio are ought to be selected to have better milled materials.;The results of this study lead to the feasibility of LiBH4 + MgH2 system for reversible hydrogen storage application near ambient temperature. Applying appropriate ball's filling ratio and milling speed can improve the milling efficiency of BMAS method.
机译:高效储氢方法在燃料电池汽车的开发中具有重要意义。寻求高能量密度的材料作为燃料成为广泛普及的燃料电池汽车的关键。 LiBH4 + MgH 2系统由于其高的氢存储密度而成为强候选者,并且它们之间的反应是可逆的。然而,LiBH4 + MgH 2系统通常需要高温和氢气压力才能释放和吸收氢。为了降低该系统的要求,纳米工程技术是一种简单有效的方法,可以提高LiBH4与MgH2之间的热力学性质,并减少其反应的动力学势垒。表明LiBH4和MgH2之间的反应可以在接近200℃或更低的温度下发生。但是,这些预测已显示与许多实验不一致。因此,这是我们首次使用球磨与气溶胶喷雾(BMAS)进行的实验来证明LiBH4和MgH2之间的反应可以在室温下的高能球磨过程中发生。通过这种BMAS工艺,我们无疑发现在气雾喷涂LiBH4 / THF溶液的同时,对MgH2进行球磨时会形成MgB 2和LiH。来自LiBH 4 / THF溶液的气溶胶纳米颗粒在BMAS过程中导致形成Li2B12H12。然后在球磨过程中形成的Li2B12H12与MgH2原位反应,形成MgB 2和LiH。离散元素建模(DEM)是描述各种球磨过程操作的有用工具。 EDEM是基于DEM的软件,用于预测功耗,衬板和介质磨损以及轧机产量。为了进一步提高BMAS工艺的铣削效率,采用EDEM对复杂的球磨工艺进行了分析。考虑变量的影响,确定罐内的铣削速度和球的填充率,以确定铣削效率。球的平均和最大速度对于影响球之间的碰撞力至关重要。通过在铣削轴上施加较大的扭矩可以实现较高的碰撞力。较高的研磨速度和较大的球填充率可增加球的扭矩和平均速度。但是,高平均速度和大扭矩会导致铣削材料不均匀。因此,应选择合适的研磨速度和球的填充率,以得到更好的研磨材料。本研究的结果导致LiBH4 + MgH2系统在环境温度附近可逆储氢的可行性。应用适当的球的填充率和研磨速度可以提高BMAS方法的研磨效率。

著录项

  • 作者

    Zhao, Xuzhe.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Materials science.
  • 学位 M.S.
  • 年度 2015
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号