首页> 外文学位 >Micromechanics-Based Continuum Constitutive Modeling of Isotropic Non-Cohesive Particulate Materials, Informed and Validated by the Discrete Element Method.
【24h】

Micromechanics-Based Continuum Constitutive Modeling of Isotropic Non-Cohesive Particulate Materials, Informed and Validated by the Discrete Element Method.

机译:各向同性非粘性颗粒材料的基于微力学的连续体本构模型,通过离散元方法进行通知和验证。

获取原文
获取原文并翻译 | 示例

摘要

We apply homogenization methods from the field of micromechanics to obtain the macroscale effective elastic moduli and the macroscale effective material friction angle for a statistically isotropic non-cohesive particulate material, such as gravel, sand, or powder, in terms of the microscale properties of the particulate material, such as the inter-particle normal and tangential contact stiffnesses (which can be derived from the mechanical properties of the material constituting the individual particles in the particulate material), the inter-particle static friction coefficient, and the geometric properties of the local particle packing structure. In this way, we obtain macroscale information that can be used in elastoplastic continuum constitutive models for general statistically isotropic non-cohesive particulate materials, based on micromechanics. All of our theoretical results are informed and validated by numerical simulations of quasi-static true triaxial and simple shear tests on multiple randomly packed material specimens of roughly 3,000-30,000 spherical particles, performed using the discrete element method (DEM). Using the discrete element method, and performing simulations with particle rotation either allowed or prohibited, we are able to isolate the effect of particle rotation in a particulate material in both the elastic and plastic ranges. Our theoretical analyses improve previous theoretical analyses in the literature, which are typically based on the principle of minimum potential energy, and are thus unable to capture the effects of mechanisms or zero-energy strains due to particle rotation in a particulate material. In contrast, our direct micromechanics derivations are based on force and moment equilibrium for individual particles, and are thus able to capture the effects of mechanisms or zero-energy strains due to particle rotation in a particulate material. We prove, both analytically and by our discrete element simulations, that mechanisms due to particle rotation can and do exist in a particulate material on the microscale, and we demonstrate how these local mechanisms affect the overall behavior of a particulate material on the macroscale.
机译:我们从微观力学领域应用均质化方法,从统计上各向同性的非粘性颗粒材料(例如砾石,沙子或粉末)的宏观尺度上获得宏观有效弹性模量和宏观有效物质摩擦角。颗粒材料,例如颗粒间的法向和切向接触刚度(可以从构成颗粒材料中单个颗粒的材料的机械性能中得出),颗粒间的静摩擦系数和材料的几何特性局部颗粒堆积结构。通过这种方式,我们可以基于微力学获得可用于一般统计各向同性非粘性颗粒材料的弹塑性连续体本构模型的宏观信息。我们的所有理论结果均通过使用离散元方法(DEM)对大约3,000-30,000个球形颗粒的多个随机堆积的材料样本进行准静态真三轴和简单剪切试验的数值模拟提供了信息并得到了验证。使用离散元方法,并在允许或禁止粒子旋转的情况下执行模拟,我们能够在弹性和塑性范围内隔离粒子材料中粒子旋转的影响。我们的理论分析改进了文献中以前的理论分析,这些理论通常基于最小势能原理,因此由于颗粒材料中的颗粒旋转而无法捕获机理或零能量应变的影响。相反,我们的直接微力学推导基于单个颗粒的力和力矩平衡,因此能够捕获由于颗粒材料中的颗粒旋转而产生的机制或零能量应变的影响。通过分析和离散元素模拟,我们证明了微粒旋转引起的机制确实存在于微观尺度的颗粒材料中,并且我们证明了这些局部机理如何影响宏观尺度上微粒材料的整体性能。

著录项

  • 作者

    Fleischmann, Jonathan A.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Applied Mechanics.;Engineering Geophysical.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 378 p.
  • 总页数 378
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号