首页> 外文学位 >Diagnosis of multi-stage fracture stimulation in horizontal wells by downhole temperature measurements.
【24h】

Diagnosis of multi-stage fracture stimulation in horizontal wells by downhole temperature measurements.

机译:通过井下温度测量诊断水平井中的多阶段裂缝。

获取原文
获取原文并翻译 | 示例

摘要

Fractured well performance diagnosis for a multiple-stage fractured horizontal well is critical to understand and improve fracture stimulation design. Temperature distribution data (by production logging tools or fiber-optic sensors) is one of the valuable information for performance diagnosis. However, until today quantitative interpretation of dynamic temperature data is still challenging and requires in-depth mathematical modeling of heat and mass transfer during production in a complex flow system.;The interpretation models developed to translate temperature data to flow conditions can be fully numerical-based simulations or analytical/semi-analytical approaches. With reasonable assumptions analytical/semi-analytical models are more suitable for real-time field applications. This dissertation presents the applications of using a coupled semi-analytical fracture model and a wellbore model to predict the temperature and pressure behavior in multiple-fractured horizontal wells in unconventional reservoirs during production. The thermal model calculated heat transfer in the fracture/reservoir/wellbore system considering subtle temperature changes caused by the Joule-Thomson cooling effect. The results showed that the wellbore fluid temperature behavior is sensitive to the flow condition, and can be used to estimate fracture initiation points, number of created fractures and flow profile along the horizontal wellbore.;This dissertation discusses the characteristics of transient temperature behaviors corresponding to different wellbore constraints, and also the fracture volume which influence the flow rate/temperature distribution along a fractured horizontal wellbore. The temperature drop when gas entering the wellbore is more obvious at the toe and is weaken towards the heel with the uniform inflow rate distribution due to the fluid mixing inside the wellbore. Field cases are presented to illustrate the application of using the temperature model to understand the fracture/flow distribution. The estimation of flow rate distribution from the temperature model is compared to the interpretation of flow by production logging tools (PLT) and commercial software. The flow profile from the temperature model presents consistent trend with PLT measurement. It is more sensitive to the fluid entries (fracture locations) and less sensitive to the influence of flow regime inside the wellbore when compared with the interpretation from array production logging tools.;The fast marching method (FMM) is presented in this study to get the thermal map near hydraulic/natural fractures. This method solves the front tracking problems efficiently. By doing so, we can consider a heterogeneity formation with fractures, and also complex fracture geometry compared with analytical solution. It is also superior in visibility of stimulated reservoir volume (SRV) and in computational efficiency compared to finite difference simulation.
机译:多级压裂水平井裂缝性井性能诊断对理解和改善裂缝增产设计至关重要。温度分布数据(通过生产测井工具或光纤传感器获得)是用于性能诊断的重要信息之一。但是,直到今天,对动态温度数据的定量解释仍然具有挑战性,并且需要在复杂的流动系统中进行生产过程中传热和传质的深入数学建模。基础的模拟或分析/半分析方法。在合理的假设下,分析/半分析模型更适合于实时现场应用。本文介绍了使用耦合半解析裂缝模型和井眼模型预测非常规油​​藏生产过程中多口水平井温度和压力行为的应用。考虑到焦耳-汤姆森冷却效应引起的细微温度变化,热模型计算了裂缝/储层/井筒系统中的传热。结果表明,井筒流体温度行为对流动条件敏感,可用于估计沿水平井筒的裂缝起始点,裂缝的产生数和流动剖面。不同的井眼约束,以及影响沿水平水平井眼的流速/温度分布的裂缝体积。气体进入井眼时的温度下降在脚趾处更明显,并且由于井眼内部的流体混合,具有均匀的流入速率分布而向脚后跟减弱。介绍了现场案例以说明使用温度模型来了解裂缝/流量分布的应用。将温度模型中流量分布的估计值与生产测井工具(PLT)和商用软件对流量的解释进行比较。温度模型的流量曲线呈现与PLT测量一致的趋势。与来自阵列生产测井工具的解释相比,它对流体进入(裂缝位置)更敏感,对井眼内部的流动状态的影响更不敏感。水力/天然裂缝附近的热图。该方法有效地解决了前方跟踪问题。通过这样做,我们可以考虑到具有裂缝的非均质地层,以及与解析解相比还具有复杂的裂缝几何形状的情况。与有限差分模拟相比,它在受激油藏体积(SRV)的可见性和计算效率方面也更优越。

著录项

  • 作者

    Cui, Jingyuan.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Petroleum engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号