首页> 外文学位 >Solvent-based self-healing approaches for fiber-reinforced composites.
【24h】

Solvent-based self-healing approaches for fiber-reinforced composites.

机译:纤维增强复合材料的基于溶剂的自修复方法。

获取原文
获取原文并翻译 | 示例

摘要

Damage in composite materials spans many length scales and is often difficult to detect or costly to repair. The incorporation of self-healing functionality in composite materials has the potential to greatly extend material lifetime and reliability. Although there has been remarkable progress in self-healing polymers over the past decade, self-repair in fiber-reinforced composite materials presents significant technical challenges due to stringent manufacturing and performance requirements. For high performance, fiber-reinforced composites, the self-healing components need to survive high temperature processing, reside in matrix interstitial regions to retain a high fiber volume fraction, and have minimal impact on the mechanical properties of the host material. This dissertation explores several microencapsulated solvent-based self-healing approaches for fiber-reinforced composites at the fiber/ matrix interface size scale as well as matrix cracking. Systems are initially developed for room temperature cured epoxies/ glass fiber interfaces and successfully transitioned to carbon fibers and high temperature-cured, thermoplastic-toughened matrices.;Full recovery of interfacial bond strength after complete fiber/matrix debonding is achieved with a microencapsulated solvent-based healing chemistry. The surface of a glass fiber is functionalized with microcapsules containing varying concentrations of reactive epoxy resin and ethyl phenyl acetate (EPA) solvent. Microbond specimens consisting of a single fiber and a microdroplet of epoxy are cured at 35°C, tested, and the interfacial shear strengths (IFSS) during the initial (virgin) debonding and subsequent healing events are measured. Debonding of the fiber/matrix interface ruptures the capsules, releasing resin and solvent into the crack plane. The solvent swells the matrix, initiating transport of residual amine functionality for further curing with the epoxy resin delivered to the crack plane. Using a resin-solvent ratio of 3:97, a maximum of 100% IFSS recovery is achieved-- a significant enhancement over prior work that reported 44% average recovery of IFSS with microencapsulated dicyclopentadiene (DCPD) monomer and Grubbs' 1st Generation catalyst healing agents. The effects of capsule coverage, resin-solvent ratio, and capsule size on recovery of IFSS are also determined, providing guidelines for integration of this healing system into high fiber volume fraction structural composites. High healing efficiencies are achieved with capsules as small as 0.6 mum average diameter.;The resin-solvent healing system is then extended to repair of a carbon fiber/epoxy interfacial bond. A binder is necessary to improve the retention of capsules on the carbon fiber surface. Two different methods for applying a binder to a carbon fiber surface are investigated. Healing efficiency is assessed by recovery of IFSS of a single functionalized fiber embedded in an epoxy microbond specimen. The two binder protocols produce comparable results, both yielding higher recovery of IFSS than samples prepared without a binder. A maximum of 91% recovery of IFSS is achieved.;In the next study, the resin-solvent healing system is applied to both interfacial damage and matrix cracking in a model composite specimen, consisting of discrete fiber tows embedded in a room temperature cured epoxy. Glass fiber tows are precisely placed in a compact tension specimen for controlled crack growth. The progression of matrix cracking and fiber debonding is observed optically during testing. Healing potential is assessed by injection of the healing agents into reference specimens (no capsules). The area under the load-displacement curve recovered during the healing event serves as a metric for evaluation of healing performance. Though full recovery is achieved in neat epoxy specimens, healing efficiency in multi-tow specimens is limited to 50%, due to the larger crack separations and energy lost during fiber fracture. In the case of only a singular embedded fiber tow, healing efficiency increases to an average of 83% recovery with full recovery in several samples. Additionally, microcapsules are incorporated into the compact tension specimen and along the fiber tow interface to evaluate in situ healing.;Several strategies to improve microcapsule thermal stability are investigated in order to transition solvent-based healing to high temperature cured material systems. A double shell wall technique is adopted for several different size scales of microcapsules. First, the effect of the inner polyurethane (PU) shell wall thickness on thermal stability is evaluated. Though high thermal stability at 180°C is achieved for large (ca. 150 mum in diameter) capsules, smaller capsules (> 2 mum in diameter) suffer from increased core loss. The addition of certain core thickeners improves thermal stability for small capsules (ca. 20% increase in core retention) when compared to capsules with solvent alone. However, an additional poly(dopamine) coating leads to the greatest improvement in thermal stability, with nearly full retention of the core solvent for all capsule size scales.;Finally, a thermoplastic resin poly(bisphenol A-co-epichlorohydrin), PBAE, is blended with a high glass transition temperature (Tg) epoxy matrix to simultaneously toughen and act as a healing agent in combination with encapsulated solvents. Microcapsules are coated with poly(dopamine) to improve the thermal stability and retain the core solvent during a cure cycle at 180°C. The fracture toughness of the high Tg epoxy (EPON 828: diamino diphenyl sulfone) is doubled by the addition of 20 wt % PBAE alone and tripled by the addition of both microcapsules and the thermoplastic phase. Self-healing is achieved with up to 57% recovery of fracture toughness of the toughened epoxy. Healing performance and fracture toughness of the microcapsule containing material remain stable after aging 30 days. The relative amounts of thermoplastic phase and the presence of solvent-filled microcapsules influence the storage modulus, Tg, and healing performance of the polymer.
机译:复合材料中的损坏跨越许多长度范围,通常很难检测到或维修成本很高。在复合材料中结合自我修复功能具有极大地延长材料寿命和可靠性的潜力。尽管在过去的十年中,自修复聚合物取得了显着进步,但是由于严格的制造和性能要求,纤维增强复合材料的自修复提出了重大的技术挑战。对于高性能的纤维增强复合材料,自修复组件需要经受高温处理,保留在基质间隙区域中以保留高纤维体积分数,并且对基质材料的机械性能影响最小。本文探讨了几种在纤维/基体界面尺寸尺度上基于微囊化溶剂的自修复方法,用于纤维增强复合材料以及基体开裂。系统最初是为室温固化的环氧树脂/玻璃纤维界面开发的,并成功地过渡到碳纤维和高温固化的热塑性增韧基体。使用微囊化的溶剂可以完全恢复纤维/基体的脱胶后的界面粘结强度。基础的康复化学。玻璃纤维的表面用微胶囊功能化,该微胶囊包含不同浓度的反应性环氧树脂和乙酸乙酯乙酸乙酯(EPA)。在35°C下固化由单纤维和环氧树脂微滴组成的微粘结试样,进行测试,并测量在初始(原始)粘结和后续愈合过程中的界面剪切强度(IFSS)。纤维/基质界面的脱粘使胶囊破裂,从而将树脂和溶剂释放到裂缝平面中。溶剂使基质溶胀,开始转移残留的胺官能团,以便与传递到裂缝平面的环氧树脂进一步固化。使用3:97的树脂-溶剂比率,可实现最高100%的IFSS回收率-与先前的工作相比有了显着提高,之前的工作报道了微囊化的双环戊二烯(DCPD)单体和Grubbs的第一代催化剂修复后的IFSS平均回收率达到44%代理商。还确定了胶囊覆盖率,树脂-溶剂比例和胶囊大小对IFSS回收率的影响,为将该愈合系统整合到高纤维体积分数的结构复合物中提供了指导。平均直径小至0.6微米的胶囊可实现高愈合效率。然后,将树脂-溶剂愈合系统扩展为修复碳纤维/环氧树脂界面键。粘合剂对于改善胶囊在碳纤维表面上的保留是必要的。研究了将粘合剂施加到碳纤维表面的两种不同方法。通过嵌入环氧树脂微粘结样品中的单根功能化纤维的IFSS回收率评估愈合效率。两种结合剂方案可产生可比的结果,与没有结合剂的样品相比,两者均能获得更高的IFSS回收率。 IFSS的最大回收率达到91%。;在下一个研究中,将树脂-溶剂修复系统应用于模型复合材料样本中的界面损伤和基体开裂,该复合材料样本由嵌入室温固化环氧树脂中的离散纤维丝束组成。将玻璃纤维丝束精确地放置在紧凑的拉伸试样中,以控制裂纹的扩展。在测试过程中光学观察基体开裂和纤维剥离的进程。通过将治疗剂注入参考样本(无胶囊)中来评估治疗潜力。在愈合过程中恢复的载荷-位移曲线下的面积用作评估愈合性能的指标。尽管在纯净的环氧样品中可实现完全恢复,但由于较大的裂纹间距和纤维断裂过程中损失的能量,多丝束样品的修复效率限于50%。在仅单个嵌入的纤维束的情况下,治愈效率提高到平均83%的恢复率,并且在多个样品中完全恢复。此外,将微囊并入紧凑的拉伸试样中并沿纤维丝束界面进行评估,以评估原位愈合。研究了几种改善微囊热稳定性的策略,以将基于溶剂的愈合转变为高温固化的材料体系。对于几种不同尺寸的微胶囊,采用双壳壁技术。首先,评估聚氨酯内壳(PU)壳壁厚度对热稳定性的影响。尽管对于大型(直径约150微米)胶囊,在180°C时仍具有很高的热稳定性。,较小的胶囊(直径大于2毫米)的药芯损失增加。与仅使用溶剂的胶囊相比,某些芯增稠剂的添加可改善小胶囊的热稳定性(芯保留率提高约20%)。然而,额外的聚多巴胺涂层可最大程度地提高热稳定性,在所有胶囊尺寸的情况下,芯溶剂几乎都能完全保留。最后,热塑性树脂聚(双酚A-共-表氯醇),PBAE,与高玻璃化转变温度(Tg)环氧基质共混,可与封装的溶剂同时增韧并充当愈合剂。微胶囊涂有聚多巴胺以改善热稳定性,并在180°C的固化周期中保留核心溶剂。通过单独添加20 wt%PBAE,高Tg环氧树脂(EPON 828:二氨基二苯砜)的断裂韧性提高了一倍,而同时加入微囊和热塑性相则使断裂韧性提高了三倍。自修复可以使增韧环氧树脂的断裂韧性恢复至57%。老化30天后,含微胶囊材料的愈合性能和断裂韧性保持稳定。热塑性相的相对量和溶剂填充的微胶囊的存在会影响聚合物的储能模量,Tg和愈合性能。

著录项

  • 作者

    Jones, Amanda R.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号