首页> 外文学位 >Catalytic Consequences of Acid Strength and Site Proximity for Acid Chemistry on Solid Bronsted Acid Catalysts.
【24h】

Catalytic Consequences of Acid Strength and Site Proximity for Acid Chemistry on Solid Bronsted Acid Catalysts.

机译:固体布朗斯台德酸催化剂上酸化学反应的酸强度和位点邻近性的催化后果。

获取原文
获取原文并翻译 | 示例

摘要

Structure-function relations for solid Bronsted acid catalysis are developed here using Bronsted acids of known structure and a broad range of acid strengths (Keggin polyoxometalate (POM) clusters) and a set of prototypical, but industrially important, Bronsted acid catalyzed reactions (alkane hydroisomerizations and alcohol dehydrations) that are accessible to detailed mechanistic studies and theoretical calculations. Keggin POM clusters exhibit well-defined atomic structures amenable to reliable theoretical estimates of deprotonation energies (DPE) as rigorous descriptors of acid strength, diverse chemical compositions that provide a wide range of acid strengths, and relatively high stability. The identity of central atoms (X) are systematically varied in Keggin POM (H8-nXn+W12O 40) clusters (X = P5+, Si4+, Al 3+, or Co2+) to examine their effects on the reactivity of these clusters for hydroisomerizations reactions of C6 aliphatic alkanes and methylcyclohexane and dehydration reactions of ethanol (EtOH). Kinetic and thermodynamic constants for kinetically-relevant steps and surface intermediates in these reactions are obtained from mechanism-based interpretations of experimentally measured turnover rates or from free energies derived from density functional theory (DFT) calculations. Active sites are counted by in operando titrations with 2,6-di-tert-butyl pyridine during catalysis. Experimental constants are compared with ones from DFT-derived free energies and correlated with catalyst DPE values through structure-function relations.;Isomerization reactions and dehydration reactions occur more rapidly on stronger Bronsted acids (with lower DPE values) because the ion-pair transition states (TS) that mediate kinetically relevant steps in these reactions benefit from their more stable conjugate anions. Electrostatic interactions between the cationic moieties and POM anions at such TS offset the large energetic costs for separating charge and attenuate differences in conjugate anion stabilities on activation barriers. The amount and distribution of charge at cationic moieties determines the extent of charge separation, which dictates the fraction of the additional energy required to deprotonate weaker acids that is recovered by the TS through the electrostatic interaction of the ion-pair. Cationic moieties with either larger amounts of or more delocalized charge result in ion-pair TS with greater extents of charge separation. Reactions mediated by TS structures with either small partial charges or localized proton-like charges are thus least sensitive to acid strength, because they recover a large fraction of the ionic and covalent components of DPE. Intrinsic selectivities in alkene isomerization, ring contraction, and EtOH dehydration reactions are independent of acid strength because the TS mediating the kinetically relevant steps for forming each product in these reactions have cationic moieties with similar amounts and localization of charge, which benefit similarly from electrostatic interactions with the conjugate anion.;Although intrinsic selectivities among isomerization or ring contraction products are independent of acid strength, selective product formation may be obtained by exploiting the effects of diffusion-enhanced secondary reactions. Alkane hydroisomerizations reactions are carried out on bifunctional catalysts containing both acid and metal functions. Metal functions serve to equilibrate alkanes with their alkenes and H2; this provides a low and known concentration of alkenes at acid sites where they undergo rapid isomerization reactions, which limits the build of product alkenes due to the thermodynamic preference for alkanes at the conditions of these reactions. The size and diffusion properties of the acid domains in bifunctional catalysts, and the concomitant metal-acid site proximity, influence rates and selectivities by changing the Thiele moduli for primary and secondary isomerization reactions within acid domains. Measured product selectivities do not rigorously reflect the intrinsic formation rates of each isomer, because subsequent isomerization events of product alkenes occur at rates comparable to their diffusion out of acid domains. Such secondary reactions are more consequential for measured selectivities on stronger acids because their larger rate constants amplify the effects of acid site density on Thiele moduli.;Alcohols can eliminate water on Bronsted acid sites via the formation of monomolecular or bimolecular products (alkenes and ethers, respectively). EtOH is the simplest alcohol to probe both pathways, as it forms both ethylene (EY) and diethyl ether (DEE) on Bronsted acids at conditions relevant to the practice of dehydration catalysis. Measured product formation rate ratios were inconsistent with conventional dehydration mechanisms that propose only monomolecular elementary steps for EY formation and bimolecular steps for DEE formation. Experiments and theory combine to indicate that both direct and sequential (ethoxide-mediated) routes contribute to DEE formation on Bronsted acids and that EY predominately forms through sequential routes. The kinetically-relevant steps for routes leading to DEE and ethoxide formation are mediated by SN2-type substitution TS and those for EY formation are mediated by monomolecular and bimolecular syn-E2-type elimination TS; all of these TS benefit similarly from the more stable conjugate anions in stronger acids making the relative rates of their associated steps independent of acid strength. (Abstract shortened by UMI.).
机译:此处使用已知结构的布朗斯台德酸和广泛的酸强度(Keggin多金属氧酸盐(POM)簇)和一组原型但在工业上很重要的布朗斯台德酸催化反应(烷烃加氢异构化)开发了固体布朗斯台德酸催化的结构-功能关系。和酒精脱水),可以进行详细的机理研究和理论计算。 Keggin POM团簇具有定义明确的原子结构,可满足可靠的脱质子能理论估计(DPE),作为酸强度的严格描述,提供宽范围酸强度的各种化学组成和相对较高的稳定性。在Keggin POM(H8-nXn + W12O 40)簇(X = P5 +,Si4 +,Al 3+或Co2 +)中,中心原子(X)的身份系统地变化,以检查它们对这些簇对加氢异构化反应的反应性的影响C6脂肪族烷烃和甲基环己烷的合成及乙醇(EtOH)的脱水反应。这些反应中动力学相关步骤和表面中间体的动力学常数和热力学常数是从对实验测得的周转率的基于机理的解释或由密度泛函理论(DFT)计算得出的自由能中获得的。通过在催化过程中用2,6-二叔丁基吡啶进行操作滴定来计数活性位点。将实验常数与DFT衍生的自由能的常数进行比较,并通过结构-功能关系将其与催化剂DPE值相关联;在强布朗斯台德酸(DPE值较低)下,异构化反应和脱水反应发生得更快,因为离子对过渡态(TS)介导这些反应中动力学相关的步骤得益于其更稳定的共轭阴离子。阳离子部分与POM阴离子之间在此类TS上的静电相互作用抵消了分离电荷的高能成本,并减弱了激活壁垒上共轭阴离子稳定性的差异。阳离子部分的电荷量和分布决定了电荷分离的程度,这决定了TS通过离子对的静电相互作用回收的弱酸去质子化所需的额外能量的比例。带有更多或更多离域电荷的阳离子部分会导致离子对TS具有更大程度的电荷分离。因此,由TS结构介导的带有小部分电荷或局部质子样电荷的反应对酸强度最不敏感,因为它们回收了DPE的大部分离子和共价成分。烯烃异构化,环收缩和EtOH脱水反应的内在选择性与酸强度无关,这是因为介导在这些反应中形成每种产物的动力学相关步骤的TS具有阳离子部分,其电荷量和电荷位置相似,这同样受益于静电相互作用尽管异构化或环收缩产物之间的固有选择性与酸强度无关,但可以通过利用扩散增强的次级反应的作用来获得选择性产物的形成。烷烃加氢异构化反应是在同时包含酸和金属官能团的双官能催化剂上进行的。金属官能团可用来平衡烷烃与烯烃和H2;这样在酸性位点进行快速异构化反应时,烯烃的浓度较低,已知浓度低,这是由于在这些反应条件下对烷烃的热力学偏好限制了产物烯烃的生成。双功能催化剂中酸域的大小和扩散特性,以及随之而来的金属酸位点,通过改变酸域内一级和二级异构化反应的Thiele模量,影响速率和选择性。测得的产物选择性不能严格反映每种异构体的内在形成速率,因为随后产物烯烃的异构化事件发生的速率与其扩散出酸域的速率相当。此类次级反应对于在强酸上的选择性具有更重要的意义,因为它们较大的速率常数会放大酸位点密度对Thiele模量的影响。醇可通过形成单分子或双分子产物(烯烃和醚,分别)。乙醇是探测这两种途径的最简单的醇,因为它在与脱水催化实践相关的条件下在布朗斯台德酸上同时形成乙烯(EY)和二乙醚(DEE)。测得的产物形成速率比与常规脱水机理不一致,常规脱水机理仅提出用于EY形成的单分子基本步骤和用于DEE形成的双分子步骤。实验和理论相结合表明,直接途径和顺序途径(乙醇介导的)都有助于在布朗斯台德酸上形成DEE,而EY主要通过顺序途径形成。导致DEE和乙醇生成的途径的动力学相关步骤由SN2型取代TS介导,而形成EY的那些步骤则由单分子和双分子syn-E2型消除TS介导。所有这些TS均得益于强酸中更稳定的共轭阴离子,从而使其相关步骤的相对速率与酸强度无关。 (摘要由UMI缩短。)。

著录项

  • 作者

    Knaeble, William John.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemical engineering.;Chemistry.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号