首页> 外文学位 >Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms.
【24h】

Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms.

机译:实现无人飞行器的有效垂直起飞/着陆和向前飞行:串联翼尖安装的旋翼机构的设计和控制。

获取原文
获取原文并翻译 | 示例

摘要

Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies.;Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.
机译:提供垂直起降(VTOL)和前向飞行能力的固定翼无人飞行器(UAV)在两种飞行模式下均具有低于标准的性能。实现下一代高效混合动力飞机需要在以下方面进行创新:(i)动力管理,(ii)高效结构和(iii)控制方法。现有的混合动力无人机通常利用以下三种转换机制之一:外部动力机制来倾斜飞行器。旋翼推进吊舱,在悬停和向前飞行过程中分开的推进单元和旋翼,或倾斜的车身模型(较小的比例)。因此,与专用的固定翼或旋翼飞机无人机相比,混合动力概念需要更多的能量。此外,为加强机翼结构而进行的设计折衷(通常是为了容纳推进系统并允许悬停,即倾斜旋翼概念)会对飞机在悬停和前飞模式下的空气动力学,可控制性和效率产生不利影响。这项研究的目标是开发更高效的VTOL /悬停和前向飞行无人机。在此过程中,过渡顺序,过渡机构和执行器性能被大量考虑。通过一系列的计算机模拟和原型台式测试来实施设计和控制方法来解决这些问题,以验证所提出的解决方案。最后,使用第一代原型进行了初步的现场测试。本研究中使用的方法为设计悬停和前向飞行中的更高效混合动力无人机提供了指导和新的双臂旋翼无人机概念。

著录项

  • 作者

    Mancuso, Peter Timothy.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Mechanical engineering.;Mechanics.;Aerospace engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 63 p.
  • 总页数 63
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号