首页> 外文学位 >Novel techniques in optical electrophysiology lead to new biophysical insights.
【24h】

Novel techniques in optical electrophysiology lead to new biophysical insights.

机译:光学电生理学的新技术带来了新的生物物理见解。

获取原文
获取原文并翻译 | 示例

摘要

Optical electrophysiology techniques possess many advantages over standard electrode-based techniques, such as the ability to address many cells at once with high spatial resolution and a lower degree of invasiveness. Unfortunately, many of these optical methods have not been translated into human use for a variety of reasons. Our studies demonstrate that indocyanine green (ICG), an infrared dye that is already FDA-approved for clinical use, is voltage-sensitive, thus providing a novel strategy for assessing nervous function in humans. In addition to optically monitoring excitability, a clinical method for optically stimulating excitable cells could also be of great benefit. A primary limitation of current optical stimulus techniques is that they require genetic manipulation, which is not currently practical in humans. We have developed a novel tool based on the selective binding of gold nanoparticles to particular classes of excitable cells. This technique provides much of the power of current optical stimulus methods but requires no genetic modification of the subject. While optical electrophysiology holds great potential for future clinical applications, new optical methods can also help answer long-standing questions in basic science. A question of particular interest in ion channel biophysics concerns the single-molecule dynamics of protein voltage sensors. We have used two different approaches in an attempt to investigate this question and have obtained the first single-molecule recordings of voltage sensor movement. With further development, these methods could answer many questions that have thus far proven difficult to address with current techniques.
机译:光学电生理技术比基于标准电极的技术具有许多优势,例如能够以高空间分辨率和较低的侵袭度一次处理许多细胞。不幸的是,由于种种原因,这些光学方法中的许多没有被转化为人类使用。我们的研究表明,吲哚菁绿(ICG)是一种已经被FDA批准用于临床的红外染料,它对电压敏感,因此为评估人的神经功能提供了一种新颖的策略。除了光学监测兴奋性之外,光学刺激可兴奋细胞的临床方法也可能具有很大的益处。当前的光刺激技术的主要局限性在于它们需要遗传操作,这在人类中目前尚不实用。我们已经开发出一种基于金纳米颗粒与特定类别的可兴奋细胞的选择性结合的新型工具。该技术提供了当前光学刺激方法的大部分功能,但不需要对受试者进行基因改造。虽然光学电生理学在未来的临床应用中具有巨大潜力,但新的光学方法也可以帮助回答基础科学领域长期存在的问题。离子通道生物物理学中一个特别令人关注的问题是蛋白质电压传感器的单分子动力学。我们尝试了两种不同的方法来尝试研究此问题,并获得了电压传感器运动的第一个单分子记录。随着进一步的发展,这些方法可以回答许多问题,这些问题迄今已证明是当前技术难以解决的。

著录项

  • 作者

    Treger, Jeremy Samuel.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Biophysics.;Biochemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 宗教;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号