首页> 外文学位 >Estimation of Antarctic sea ice properties using surface and space borne data.
【24h】

Estimation of Antarctic sea ice properties using surface and space borne data.

机译:利用地表和空间传播数据估算南极海冰的性质。

获取原文
获取原文并翻译 | 示例

摘要

Sea ice is a fundamental component of the Earth's systems that cannot be ignored in the large scale environmental predictions of future climate conditions. Sea ice is a complex material and has major influences on global climate with its large maximum extent and seasonal change. In this research, remote sensing validation based on comparisons with surface based data has been done for quantitative monitoring of the ice properties. Various satellite products consisting of passive microwave, active microwave, and high resolution visible imagery were used and compared with in-situ measurements collected during scientific Antarctic cruises, conducted during International Polar Year (IPY) 2007--2008. This data used to provide a quantifiable method for observing sea ice, from all regions of the Antarctic sea ice zone to develop relationships that test existing remote sensing algorithms, evaluate alternative algorithms and provide error estimates on sea ice thickness derived from existing algorithms.Chapter 2 presents the comparison of ice extent/ice edge data from the NIC and the AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) passive microwave products using the Antarctic Sea Ice Process and Climate (ASPeCt) ship observations from the Oden expedition in December 2006 as ground truth to verify the two products during Antarctic summer. Ice edge location comparison has also been made between the two data sets, ship ice observations and NIC daily ice edge products. NIC analyses rely more heavily on high resolution satellite imagery such as active radar and visible imagery when visibility (clouds) allows. From these comparisons, a quantitative estimate of the differences in summer ice extent between the two remotely obtained products, AMSR-E and NIC ice edge, over the larger West Antarctic sea ice zone, has been obtained.Chapter 3 evaluates the comparison of ASPeCt ship based observations (conducted during Sea Ice Mass Balance in the Antarctic (SIMBA) 2007 Antarctic cruise) with coincident satellite active and passive microwave data. We combined visual ship-based observations of sea-ice and snow properties during SIMBA with coincident active and passive microwave satellite data with the aims to (a) derive typical radar backscatter ranges for observed sea-ice types and ice type mixtures, (b) improve our knowledge about the radar backscatter of different ice types in the Bellingshausen Sea at early-middle spring, (c) interpret AMSR-E snow depth over these ice types, and (d) identify the potential of the investigated active microwave signatures for a synergy with AMSR-E data to eventually improve the snow depth retrieval.Chapter 4 presents the validation of remote sensing measurements of ice extent and concentration with ASPeCt ship-based ice observations, conducted during the SIMBA and the Sea Ice Physics and Ecosystem eXperiment (SIPEX) International Polar Year (IPY) cruises (Sept--Oct 2007). First, the total sea ice cover around the entire continent was determined for 2007--2008 from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) passive microwave and National Ice Center (NIC) charts. Second, Antarctic Sea Ice Processes and Climate (ASPeCt) ship observations from the SIMBA and SIPEX expeditions in the austral end of winter--beginning of spring 2007 are used as ground truth to verify the AMSR-E sea ice concentration product provided by both the Enhanced NASA Team Algorithm (NT2) and Bootstrap Basic Algorithm (BBA).Chapter 5 presents supplemental analysis related to the baseline thickness of Antarctic sea ice on a circumpolar basis from field measurements. In this part, our objectives were (1) Develop statistical relationships between surface elevation (snow freeboard), ice elevation (ice freeboard) and mean sea ice thickness using previous and newly obtained Antarctic sea ice profiles and examine these relationships for any consistent regional trends, (2) Derive sea ice thickness from profile elevations, using buoyancy equation, to determine error estimates compared to measured thickness compare error estimates between the thicknesses derived using statistical relationships (Objective 1) and buoyancy theory where the additional term for the density of the slush layer is needed, when surfaces are flooded from snow loading. (Abstract shortened by UMI.)
机译:海冰是地球系统的基本组成部分,在未来气候条件的大规模环境预测中不可忽视。海冰是一种复杂的材料,其最大程度和季节性变化对全球气候具有重大影响。在这项研究中,已经完成了基于与地面数据的比较的遥感验证,以定量监测冰的性质。使用了包括无源微波,有源微波和高分辨率可见图像的各种卫星产品,并将其与在国际极地年(IPY)2007--2008年进行的科学南极航行中收集的现场测量结果进行了比较。该数据用来为南极海冰带所有区域的海冰观测提供一种可量化的方法,以发展相互关系,以测试现有的遥感算法,评估替代算法并提供从现有算法得出的海冰厚度误差估算值。第二章展示了使用NIC和AMSR-E(高级微波扫描辐射计-地球观测系统)无源微波产品的冰范围/冰边缘数据的比较,该产品使用了12月的奥登探险队的南极海冰过程和气候(ASPeCt)船观测数据以2006年为基础,在南极夏季验证了这两种产品。在两个数据集,船舶冰观测和NIC每日冰缘产品之间也进行了冰缘位置比较。当可见性(云)允许时,NIC分析在很大程度上依赖于高分辨率卫星图像,例如活动雷达和可见图像。通过这些比较,定量得出了在较大的南极海冰带上两种遥远获取的产品AMSR-E和NIC冰缘之间夏季冰范围差异的定量估计。第三章评估了ASPeCt船的比较卫星主动和被动微波数据同时进行的观测(在南极海冰质量平衡(SIMBA)2007年南极航行期间进行)。我们将SIMBA期间基于舰船的视觉观测对海冰和雪的性质与主动和被动微波卫星数据相结合,目的是(a)得出观察到的海冰类型和冰类混合物的典型雷达反向散射范围,(b)改善我们对中春初贝灵斯豪森海不同冰类型的雷达后向散射的认识,(c)解释这些冰类型上的AMSR-E雪深,以及(d)确定被调查的活跃微波特征对于与AMSR-E数据的协同作用以最终改善积雪深度。第4章介绍了在SIMBA和海冰物理与生态系统试验(SIPEX)期间进行的基于ASPeCt船上冰观测的冰量和浓度遥感测量的验证。 )国际极地年(IPY)航行(2007年9月至10月)。首先,根据高级微波扫描辐射计-地球观测系统(AMSR-E)被动微波和国家冰中心(NIC)图表确定2007--2008年整个大陆的总海冰覆盖量。其次,从冬季南端的SIMBA和SIPEX探险队获得的南极海冰过程和气候(ASPeCt)船观测数据(从2007年春季开始)被用作地面真相,以验证这两个机构提供的AMSR-E海冰浓度积增强的NASA团队算法(NT2)和Bootstrap基本算法(BBA)。第5章介绍了与南极海冰基线厚度有关的补充分析,这些领域是通过实地测量得出的。在这一部分中,我们的目标是(1)使用先前和新获得的南极海冰剖面图建立表面海拔高度(雪干舷),冰层海拔高度(冰干舷)和平均海冰厚度之间的统计关系,并检查这些关系是否存在任何一致的区域趋势,(2)使用浮力方程式从剖面高程推导海冰厚度,以确定误差估计值与测得的厚度比较,比较使用统计关系(目标1)和浮力理论得出的厚度之间的误差估计值,其中浮力密度的附加项当表面被积雪淹没时,需要泥浆层。 (摘要由UMI缩短。)

著录项

  • 作者

    Ozsoy Cicek, Burcu.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Geophysics.Physical Oceanography.Remote Sensing.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 293 p.
  • 总页数 293
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号