首页> 外文学位 >Paralogous genes in Arabidopsis thaliana contribute to diversified phenylpropanoid metabolism.
【24h】

Paralogous genes in Arabidopsis thaliana contribute to diversified phenylpropanoid metabolism.

机译:拟南芥中的旁系同源基因有助于多样化的苯丙烷代谢。

获取原文
获取原文并翻译 | 示例

摘要

Significant evidence supports the idea that gene duplication drives the evolution of new gene function. Besides being silenced, duplicated genes can either neofunctionalize or subfunctionalize under selective pressure or neutral drift. Understanding the trajectory of how each gene is fixed and presumably provides added fitness remains difficult. Plant specialized metabolism provides an attractive platform to study the fixation of genes post duplication and how this process leads to the chemical diversity seen today. Specialized metabolites by definition are thought to be dispensable under normal growth conditions. Thus deleterious mutations occurring in paralogous genes that otherwise would be selected against in primary metabolism may be more tolerated in specialized metabolism. Using the Arabidopsis phenylpropanoid pathway as a model, in this thesis I describe two cases where neofunctionalization and subfunctionalization of duplicated genes contributed to metabolite diversification.;The phenylpropanoid pathway intersects with primary metabolism at phenylalanine. Recently we identified a new set of phenylalanine derived compounds in Arabidopsis which we named arabidopyrones (APs) which include arabidopyl alcohol, iso-arabidopyl alcohol, arabidopic acid and iso-arabidopic acid. CYP84A4 is a paralog of CYP84A1, a well-characterized enzyme in the phenylpropanoid pathway, and CYP84A4 has neofunctionalized relative to its ancestral function. CYP84A4 3-hydroxylates p-coumaraldehyde, a phenylpropanoid intermediate, to generate caffealdehyde. Caffealdehyde can be used by a conserved ring cleavage dioxygenase, AtLigB, in a step required to make the heterocyclic APs. Understanding AP biosynthesis may provide a unique opportunity to learn the broader biological function of LigB homologs. To do so, we tested the hypothesis that enzymes and intermediates in the phenylpropanoid pathway leading to p-coumaraldehyde are involved in AP biosynthesis. The general phenylpropanoid pathway gives rise to p-coumaryl CoA via phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL). Cinnamoyl CoA reductase (CCR) then converts p-coumaryl CoA to p-coumaraldehyde, the substrate of CYP84A4. Through the analyses of mutants that are defective in these genes, stable-isotope labeling studies, and chemical complementation experiments, we conclude that the activities of these enzymes are required for AP biosynthesis. In addition, we found that cinnamyl alcohol dehydrogenase C and D (CAD C and D), known enzymes in later steps of the phenylpropanoid pathway, are involved in AP biosynthesis in that they may convert caffealdehyde to caffeoyl alcohol which then can be used by AtLigB to generate arabidopyl alcohol and arabidopic acid.;Four isoforms of 4CLs have been identified in Arabidopsis. 4CL generates p-coumaryl CoA and caffeoyl CoA from their respective acids which are required for the major products of this pathway. Phylogenetic analysis reveals that 4CL1, 4CL2 and 4CL4 are more closely related to one another than to 4CL3. Promoter-GUS analysis shows that 4CL1 and 4CL2 are expressed in lignifying cells. In contrast, 4CL3 is expressed in a broad range of cell types, indicating that 4CLs have subfunctionalized with regard to expression patterns. We found that 4cl3 mutants have an over-all reduction in flavonoid biosynthesis, suggesting that 4CL3 has acquired a distinct role in phenylpropanoid metabolism. Sinapoylmalate, the major hydroxycinnamoyl ester found in Arabidopsis is greatly reduced in a 4cl1 4cl3 mutant, showing that 4CL1 and 4CL3 function redundantly in its biosynthesis. The 4cl1 4cl2 double mutant and the 4cl1 4cl2 4cl3 triple mutant are both dwarf and contain less lignin than wild type, indicating that 4CL1 and 4CL2 are important for plant growth and that 4CL3 has a role in lignin biosynthesis in addition to its function in soluble metabolism. We could not find an important role for 4CL4 in any of the organs examined, consistent with its limited expression profile. Together, these data show that the four paralogs of 4CLs in Arabidopsis diverged in their expression patterns, resulting in their overlapping yet distinct roles in phenylpropanoid metabolism.
机译:大量证据支持基因复制驱动新基因功能进化的观点。除了沉默以外,重复的基因还可以在选择性压力或中性漂移下新功能化或亚功能化。了解每个基因的固定方式以及大概提供额外适应性的轨迹仍然很困难。植物专门代谢为研究复制后基因的固定以及该过程如何导致当今所见化学多样性提供了一个有吸引力的平台。根据定义,专门的代谢产物在正常生长条件下是必需的。因此,在原代代谢中原本会被选择的在旁系同源基因中发生的有害突变可能在专门的代谢中被更宽容。本文以拟南芥属苯丙氨酸途径为模型,描述了两个重复基因的新功能化和亚功能化促进代谢产物多样化的情况。苯丙氨酸途径与苯丙氨酸的初级代谢相交。最近,我们在拟南芥中鉴定了一组新的由苯丙氨酸衍生的化合物,我们将其命名为arabidopyrones(APs),其中包括arabidopyl醇,iso-arabidopyl醇,arabidopic酸和iso-arabidopic酸。 CYP84A4是CYP84A1的旁系同源物,CYP84A1是苯丙烷类途径中一个公认的酶,并且CYP84A4相对于其祖先功能具有新功能。 CYP84A4 3-羟基化对-香豆醛(一种苯丙烷中间体)生成咖啡醛。在制备杂环AP所需的步骤中,保守的环裂解双加氧酶AtLigB可以使用咖啡醛。了解AP的生物合成可能会提供一个独特的机会来学习LigB同源物的更广泛的生物学功能。为此,我们测试了以下假设:AP的生物合成涉及导致对香豆醛的苯丙烷途径中的酶和中间体。一般的苯丙烷途径通过苯丙氨酸氨裂合酶(PAL),肉桂酸酯4-羟化酶(C4H)和4-香豆酸酯:CoA连接酶(4CL)生成对香豆素CoA。然后,肉桂酰基CoA还原酶(CCR)将对-香豆基CoA转化为对-香豆醛,即CYP84A4的底物。通过对这些基因有缺陷的突变体的分析,稳定同位素标记研究和化学互补实验,我们得出结论,这些酶的活性是AP生物合成所必需的。此外,我们发现肉桂醇脱氢酶C和D(CAD C和D)(在苯丙烷途径后续步骤中已知的酶)参与AP生物合成,因为它们可以将咖啡醛转化为咖啡醇,然后AtLigB可以使用。产生阿拉伯糖醇和阿拉伯糖基酸。在拟南芥中已鉴定出4CLs的四个同工型。 4CL从它们各自的酸中生成对香豆素CoA和咖啡酰CoA,这是该途径的主要产物所必需的。系统发育分析表明,4CL1、4CL2和4CL4之间的相互关系比与4CL3之间的关系更紧密。启动子-GUS分析显示4CL1和4CL2在木质化细胞中表达。相反,4CL3在广泛的细胞类型中表达,表明4CL在表达模式方面功能不足。我们发现4cl3突变体在类黄酮的生物合成中具有整体减少,这表明4CL3在苯丙烷类代谢中获得了独特的作用。在拟南芥中发现的主要的羟基肉桂酸酯-芥子酸苹果酸酯在4cl1 4cl3突变体中被大大减少,表明4CL1和4CL3在其生物合成中具有多余的功能。 4cl1 4cl2双突变体和4cl1 4cl2 4cl3三重突变体都较矮,并且所含的木质素比野生型少,这表明4CL1和4CL2对植物生长很重要,并且4CL3除了在可溶性代谢中的功能外,还具有木质素生物合成的作用。 。与它有限的表达谱相一致,我们在4CL4的任何器官中都找不到重要的作用。总之,这些数据表明,拟南芥中4CL的四个旁系同源物的表达方式不同,从而导致它们在苯丙烷代谢中的作用重叠而又有不同。

著录项

  • 作者

    Li, Yi.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biochemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号