首页> 外文学位 >Molecular Accessibility: Microvilli and the Endothelial Glycocalyx.
【24h】

Molecular Accessibility: Microvilli and the Endothelial Glycocalyx.

机译:分子可及性:微绒毛和内皮糖萼。

获取原文
获取原文并翻译 | 示例

摘要

Leukocytes play a critical role in the body's response to infection, and an important step in leukocyte function is the extravasation cascade in which the leukocytes transmigrate through the endothelium to get to sites of infection. The balance of this interaction is crucial for proper tissue function as over-activation can lead to a number of inflammatory diseases. In order to understand the extravasation cascade we must first understand the mechanics of interaction between a leukocyte and the endothelium, and while many facets of this interaction are known, there is still a gap in understanding the molecular accessibility during leukocyte rolling, adhesion, and spreading on the luminal surface of the endothelium during extravasation. The focus of this thesis is on the role that physical factors, namely the surface structure of the cells and their deformability, play in regulating the interaction of leukocytes with the endothelium.;To assess how the surface structure of the leukocyte can influence molecular accessibility, images of leukocytes spreading on a glass surface were used to seed a computational model. These calculations predicted that the majority of integrins (LFA-1) and chemokine receptors (CXCR1) were localized in the valleys between microvilli where they are sequestered from the surface. When the leukocyte spreads onto the glass, the change in structure can lead to a greater than 1000-fold increase in the number of adhesion molecules and chemokine receptors capable of forming bonds with the surface.;The thickness and stiffness of the endothelial glycocalyx will influence leukocyte interaction with the endothelium by acting as a steric barrier. The amount of resistance to adhesive events the glycocalyx provides is the result of two properties: glycocalyx thickness and stiffness. The endothelial glycocalyx was directly measured with an atomic force microscope to have a thickness of 150 +/- 10 nm and a modulus of 0.08 +/- 0.01 kPa. When the endothelium was stimulated with TNFalpha to activate the cells, the thickness of the glycocalyx was reduced by 68% and the modulus of the glycocalyx was reduced by 38%. This loss of glycocalyx indicates that there is a significant increase in molecular accessibility once the cells are activated.;Using these measured values, an analytic model of a leukocyte interacting with the endothelium was developed to quantify the force required to engage adhesion molecules. The model predicts that, under normal conditions, a force of 1.8 nN would be required to engage the integrins in the microvilli valleys with the adhesion molecules on the endothelial surface because of the steric resistance of the glycocalyx. This is an order of magnitude more force than the cell is expected to exert when circulating through the vasculature. When the thickness and modulus of the glycocalyx are reduced after TNFalpha stimulation, this force requirement drops by 90% to only 130 pN, a value well within the expected range of normal physiological forces.;The results of these studies describe how the leukocyte and endothelium work in tandem to limit adhesive events under homeostatic conditions and increase adhesion when activated. Under homeostatic conditions, the leukocyte sequesters adhesion molecules in the valleys of its microvilli and the endothelium expresses a robust glycocalyx to act as a steric barrier. When the cells are activated, the increase in the number of accessible adhesion molecules on the leukocyte and the loss of the glycocalyx layer act to increase adhesion and promote extravasation.
机译:白细胞在机体对感染的反应中起关键作用,白细胞功能的重要步骤是外渗级联反应,在该级联中白细胞通过内皮迁移进入感染部位。这种相互作用的平衡对于适当的组织功能至关重要,因为过度激活会导致多种炎症性疾病。为了了解外渗级联反应,我们必须首先了解白细胞与内皮之间的相互作用机理,并且虽然了解了许多相互作用的方面,但是在了解白细胞滚动,粘附和扩散过程中的分子可及性方面仍然存在差距在外渗过程中在内皮的腔表面上形成。本论文的重点是物理因素,即细胞的表面结构及其可变形性,在调节白细胞与内皮的相互作用中的作用。要评估白细胞的表面结构如何影响分子可及性,白细胞散布在玻璃表面上的图像被用于播种计算模型。这些计算预测,大多数整合素(LFA-1)和趋化因子受体(CXCR1)定位在微绒毛之间的谷中,从表面隔离它们。当白细胞扩散到玻璃上时,结构的改变会导致能够与表面形成键的粘附分子和趋化因子受体的数量增加超过1000倍。;内皮糖萼的厚度和硬度会影响白细胞通过充当空间屏障与内皮相互作用。糖萼提供的对粘附事件的抵抗力的数量是两个特性的结果:糖萼厚度和硬度。用原子力显微镜直接测量内皮糖萼的厚度为150 +/- 10nm,模量为0.08 +/- 0.01kPa。当用TNFα刺激内皮激活细胞时,糖萼的厚度减少了68%,糖萼的模量减少了38%。糖萼的丢失表明一旦细胞被激活,分子可及性就会大大增加。利用这些测量值,开发了白细胞与内皮相互作用的分析模型,以量化与粘附分子结合所需的力。该模型预测,在正常条件下,由于糖萼的空间阻力,将需要1.8 nN的力才能使微绒毛谷中的整联蛋白与内皮表面上的粘附分子结合。这比细胞在脉管系统中循环时所施加的力大一个数量级。当TNFα刺激后糖萼的厚度和模量减小时,该力需求下降90%至仅130 pN,该值完全在正常生理力的预期范围内。;这些研究的结果描述了白细胞和内皮细胞如何协同工作以限制稳态条件下的粘合事件,并在激活后增加粘合力。在稳态条件下,白细胞隔离其微绒毛谷中的粘附分子,并且内皮表达坚固的糖萼以充当空间屏障。当细胞被激活时,白细胞上可及的黏附分子数量的增加和糖萼层的损失起到增加黏附和促进外渗的作用。

著录项

  • 作者

    Marsh, Graham.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Biomedical engineering.;Immunology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号