首页> 外文学位 >Hybrid laser integration for silicon photonics platform.
【24h】

Hybrid laser integration for silicon photonics platform.

机译:用于硅光子平台的混合激光器集成。

获取原文
获取原文并翻译 | 示例

摘要

Silicon photonics has attracted extensive attention in both academia and industry in recent years, as an enabling technology to address the exponentially increasing demands for communication bandwidth. It brings state-of-the-art complementary metal-oxide-semiconductor (CMOS) processing technology to the field of photonic integration. The high yield and uniformity of silicon devices make it possible to build complex photonic systems-on-chip in large production volumes. Cutting-edge device performance has been demonstrated on this platform, including high-speed modulators, photodetectors, and passive devices such as the Y-junction, waveguide crossing, and arrayed waveguide gratings. As the device library quickly matures, an integrated laser source for a transmitter remains missing from the design kit.;I demonstrated hybrid external cavity lasers by integrating reflective optical semiconductor amplifiers and silicon photonics chips. The gain chip and silicon chip can be designed and optimized independently, which is a significant advantage compared to bonding an III-V film on top of the silicon chip. Advanced optoelectronics packaging processes can be leveraged for chip alignment. Tunable C-Band (near 1550 nm) lasers with 10 mW on-chip power and less than 220 kHz bandwidth are demonstrated. O-Band lasers (operating near 1310 nm) as well as successful data transmission at 10 Gb/s and 40 Gb/s using the hybrid laser as the light source are also demonstrated. I designed a single cavity, multi wavelength laser by utilizing a quantum dot SOA, Sagnac loop and micro-ring based silicon photonics half cavity. Four lasing peaks with less than 3 dB power non-uniformity were measured, as well as 4 x 10 Gb/s error free data transmission.;In addition to my main focus on RSOA/Silicon external cavity lasers, I propose and demonstrate a novel germanium-assisted grating coupler with low loss on-and-off chip fiber coupling. A coupling efficiency of 76% at 1.55 microm and 40 nm 1 dB optical bandwidth is achieved using FDTD simulation.
机译:近年来,硅光子学已成为学术界和工业界的广泛关注,作为一种能够解决通信带宽指数增长需求的技术。它将最先进的互补金属氧化物半导体(CMOS)处理技术带入光子集成领域。硅器件的高产量和均匀性使得可以大批量生产复杂的片上光子系统。该平台已证明了最先进的设备性能,包括高速调制器,光电检测器以及无源设备,例如Y结,波导交叉和阵列波导光栅。随着设备库的快速成熟,设计套件中缺少用于发射器的集成激光源。我通过集成反射型光学半导体放大器和硅光子芯片,展示了混合外腔激光器。增益芯片和硅芯片可以独立设计和优化,与在硅芯片顶部粘合III-V膜相比,这是一个显着的优势。可以利用先进的光电封装工艺进行芯片对准。演示了具有10 mW片上功率和小于220 kHz带宽的可调谐C波段(1550 nm附近)激光器。还展示了O波段激光器(工作在1310 nm附近)以及使用混合激光器作为光源以10 Gb / s和40 Gb / s的成功数据传输。我利用量子点SOA,Sagnac环和基于微环的硅光子半腔设计了一个单腔,多波长激光器。测量了四个激光峰值,这些激光峰值具有小于3 dB的功率不均匀性,以及4 x 10 Gb / s的无错误数据传输。;除了主要研究RSOA /硅外腔激光器外,我还提出并演示了一种新颖的方法。锗辅助光栅耦合器,具有低损耗开关芯片光纤耦合。使用FDTD仿真,在1.55微米和40 nm 1 dB的光带宽下,耦合效率达到76%。

著录项

  • 作者

    Yang, Shuyu.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号