首页> 外文学位 >Silk fibroin nanostructured materials for biomedical applications.
【24h】

Silk fibroin nanostructured materials for biomedical applications.

机译:丝素蛋白纳米结构材料,用于生物医学应用。

获取原文
获取原文并翻译 | 示例

摘要

Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.
机译:事实证明,纳米结构的生物聚合物有望发展新型的生物医学应用,其中纳米级的结构通常通过自组装发生。但是,通过添加化学交联剂,改变pH值或改变离子组成,通过诱导材料转变为其他形式,也可以合成这些结构。对流体环境中纳米结构的生成(例如液态有机溶剂或超临界流体)的了解尚未得到彻底检查,尤其是那些基于蛋白质的嵌段共聚物的纳米结构。在这里,我们研究了重组的丝素蛋白的转变,由于其生物相容性,可生物降解性和易于功能化,它已成为有前途的生物聚合物,并转变为亚微米球和凝胶网络,可在组织工程和高级传感器中提供应用。两种类型的凝胶网络(水凝胶和气凝胶)具有小孔和大表面积,这由其结构决定。我们使用微流控设备设计和分析丝纳米颗粒的形成,同时提供药物递送应用。此外,我们提供了一个模型并表征了从胶束到纳米颗粒的水凝胶形成,同时在体外细胞培养模型中研究了细胞对水凝胶的反应。最后,我们提供了近临界和超临界干燥过程中纳米纤维形成的第二种模型,并表征了在不同干燥压力下的丝素蛋白特性,当其作为稳定基质时,显示出改善了在不同压力下干燥的截留酶的活性。这项工作创造了新的纳米结构丝素蛋白形式,有利于可应用于其他纤维蛋白的生物医学应用。

著录项

  • 作者

    Mitropoulos, Alexander N.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Biomedical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号