首页> 外文学位 >Distributed solutions for rate control and maximum lifetime in wireless networks.
【24h】

Distributed solutions for rate control and maximum lifetime in wireless networks.

机译:用于无线网络中速率控制和最大使用寿命的分布式解决方案。

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on fairness in wireless networks. Two fairness problems are addressed: end-to-end flow rate fairness in multihop wireless networks and lifetime fairness in wireless sensor networks.;In recent years, the advent of multihop wireless networks has greatly accelerated the research on bandwidth management in such networks to support new applications. While much research concentrates on the MAC layer, the users perception on these networks is however determined mainly based on the networks end-to-end effectiveness. It is important for us to develop flexible tools for traffic engineering in multihop wireless networks. In this study, two solutions are proposed to achieve end-to-end maxmin flow rate fairness in such networks.;A cross-layer design is firstly proposed for achieving end-to-end maxmin fairness in wireless mesh networks. In this approach, a generalized maxmin model is first proposed for multihop wireless networks. At the network layer, our design allocates network capacity to end-to-end flows for maxmin bandwidth allocation. At the MAC layer, our design achieves the allocated bandwidth shares for flows through a two-level weighted fair queuing algorithm. The proposed design is able to equalize the end-to-end bandwidth allocation to competing flows that share common bottlenecks, while fully utilizing the network capacity. Results of simulations are presented to demonstrate the effectiveness of the proposed solution in enhancing end-to-end fairness.;We also propose a fully distributed solution that is compatible with IEEE 802.11 DCF for achieving end-to-end maxmin fairness. We transform the global maxmin objective to four local conditions and prove that, if the four local conditions are satisfied in the whole network, then the global maxmin objective must be achieved. We then design a distributed rate adaptation protocol based on the four conditions. Whenever a local condition is tested false at a node, the node informs the sources of certain selected flows to adapt their rates such that the condition can be satisfied. Comparing with previous work, our protocol has a number of advantages. First, it does not modify the backoff scheme of IEEE 802.11. Second, it replaces per-flow queueing with per-destination queueing. Packets from all flows to the same destination is queued together. Third and most important, our protocol achieves far better fairness (or weighted fairness) among end-to-end flows than previous work.;Wireless sensor networks have a wide range of applications in habitat observation, seismic monitoring, battlefield sensing, etc. As another type of multihop wireless network, a sensor network consists of battery-powered sensor nodes that are limited in energy supply. An important problem of wireless sensor networks is maximizing the operational lifetime of a sensor network. The lifetime of a sensor network is defined as the lifetimes of all sensors that produce useful data. A centralized solution proposed by previous work requires solving a sequence of linear programming problems. The computation overhead can be prohibitively high for large sensor networks. Collecting the complete information about the network and uploading the complete forwarding policies to all nodes require significant amount of transmissions, particularly for nodes around the sink. We propose a fully distributed progressive algorithm which iteratively produces a series of lifetime vectors, each better than the previous one. Instead of giving the optimal result in one shot after lengthy computation, the proposed distributed algorithm has a result at any time, and the more time spent gives the better result. We show that when the algorithm stabilizes, its result produces the maximum lifetime vector. Furthermore, the algorithm is able to converge rapidly towards the maximum lifetime vector with low overhead.
机译:这项研究的重点是无线网络的公平性。解决了两个公平性问题:多跳无线网络中的端到端流量公平性和无线传感器网络中的生存期公平性;近年来,多跳无线网络的出现极大地加速了此类网络中支持带宽管理的研究。新的应用程序。尽管许多研究都集中在MAC层,但是用户对这些网络的感知主要取决于网络的端到端有效性。对于我们来说,为多跳无线网络中的流量工程开发灵活的工具非常重要。在这项研究中,提出了两种解决方案以在这种网络中实现端到端的最大最小流量公平性。首先,提出了一种跨层设计以在无线网状网络中实现端到端的最大最小公平性。在这种方法中,首先提出了针对多跳无线网络的广义maxmin模型。在网络层,我们的设计将网络容量分配给端到端流,以实现最大最小带宽分配。在MAC层,我们的设计通过两级加权公平排队算法为流分配了带宽份额。提出的设计能够在充分利用网络容量的同时,将端到端的带宽分配均衡到共享常见瓶颈的竞争流。仿真结果表明了所提出的解决方案在增强端到端公平性方面的有效性。我们还提出了一种与IEEE 802.11 DCF兼容的完全分布式解决方案,以实现端到端maxmin公平性。我们将全局最大最小值目标转换为四个局部条件,并证明,如果整个网络都满足四个局部条件,则必须实现全局最大最小值目标。然后,我们基于这四个条件设计一个分布式速率自适应协议。每当在节点上测试局部条件为假时,该节点都会通知某些选定流的源以调整其速率,从而可以满足条件。与以前的工作相比,我们的协议具有很多优点。首先,它不修改IEEE 802.11的退避方案。其次,它用按目的地排队代替了按流排队。从所有流到相同目的地的数据包一起排队。第三,也是最重要的一点是,我们的协议在端到端流之间实现了比以前的工作更好的公平性(或加权公平性)。;无线传感器网络在栖息地观察,地震监测,战场传感等方面具有广泛的应用。传感器网络是另一种类型的多跳无线网络,由能量限制的电池供电传感器节点组成。无线传感器网络的一个重要问题是最大化传感器网络的使用寿命。传感器网络的寿命定义为产生有用数据的所有传感器的寿命。先前工作提出的集中式解决方案需要解决一系列线性规划问题。对于大型传感器网络,计算开销可能会过高。收集有关网络的完整信息并将完整的转发策略上载到所有节点需要大量的传输,尤其是对于宿附近的节点。我们提出了一种完全分布式的渐进算法,该算法可迭代生成一系列寿命向量,每个向量都比上一个更好。所提出的分布式算法不会在经过长时间的计算后一次给出最佳结果,而是随时都有结果,花费的时间越多,结果越好。我们表明,当算法稳定时,其结果将产生最大寿命向量。此外,该算法能够以低开销快速收敛到最大寿命向量。

著录项

  • 作者

    Zhang, Liang.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Computer.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号