首页> 外文学位 >Numerical modeling of the performance of thermal interface materials.
【24h】

Numerical modeling of the performance of thermal interface materials.

机译:热界面材料性能的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Thermal interface materials are needed for improving thermal contacts, such as those in microelectronics. Finite element modeling is conducted to understand the factors that govern the performance of thermal interface materials of controlled thickness in the form of thermal pastes or paste-coated-sheets between copper surfaces of controlled roughness. Good agreement is found between modeling and experimental results that involve copper proximate surfaces of controlled roughness sandwiching the thermal interface material of controlled thickness.;Comparative evaluation is made on two contrasting pastes, namely a carbon black paste and a commercial metal particle paste. The carbon black paste is lower in thickness than the metal particle paste, so it gives better performance. The performance of both pastes is more influenced by the paste-copper interfacial conductance than the paste thermal conductivity. The effects of pressure, paste thickness and copper surface roughness on the performance are mainly due to the change in the fractional filling of the valleys in the copper surface topography.;In case of paste-coated sheets, the coating on both sides of a core sheet is the carbon black paste and it serves to improve the conformability. The core sheets are copper foil, aluminum foil, indium foil and flexible graphite. Flexible graphite (made from exfoliated graphite) is advantageous in its low elastic modulus, whereas copper and aluminum foils are advantageous in their high thermal conductivity. Indium is advantageous in its low elastic modulus compared to copper or aluminum and in its high thermal conductivity compared to flexible graphite. Among the four types of core sheet with identical thickness, coated indium foil gives the best performance for a range of foil thickness, which is 6-112 mum for the case of smooth (15 mum roughness) proximate surfaces and 117-320 mum for the case of rough (0.01 mum roughness) proximate surfaces. Aluminum foil gives the best performance for a thickness range of 112-2000 mum in the case of smooth proximate surfaces. For thicknesses below these ranges, flexible graphite performs the best. For thicknesses above these ranges, copper foil performs the best.
机译:需要热界面材料来改善热接触,例如微电子学中的那些。进行有限元建模以了解控制可控厚度的热界面材料的性能的因素,这些可控厚度以可控粗糙度的铜表面之间的导热胶或导热胶涂层的形式存在。在建模和实验结果之间找到了很好的一致性,其中涉及到具有受控粗糙度的铜邻近表面,并夹有厚度受控的热界面材料。对两种对比色的糊剂,即炭黑糊剂和商用金属颗粒糊剂,进行了比较评估。炭黑浆料的厚度低于金属颗粒浆料的厚度,因此具有更好的性能。两种糊的性能受糊-铜界面电导的影响要大于糊的导热率。压力,焊膏厚度和铜表面粗糙度对性能的影响主要是由于铜表面形貌中的谷部分数填充的变化所致。薄片是炭黑糊剂,其用于改善贴合性。芯板是铜箔,铝箔,铟箔和柔性石墨。挠性石墨(由剥离石墨制成)在低弹性模量方面是有利的,而铜箔和铝箔的高导热率是有利的。与铜或铝相比,铟的弹性模量低,而与柔性石墨相比,铟的导热率高。在四种厚度相同的芯板中,涂有铟箔的铝箔在一定范围的箔厚度下具有最佳性能,对于光滑的表面(粗糙度为15um),其厚度为6-112 mum,对于表面厚度为117-320 mm的情况,则为117-320 mum。靠近表面的情况(粗糙度为0.01 mum)。在光滑的近表面上,铝箔在112-2000微米的厚度范围内具有最佳性能。对于低于这些范围的厚度,柔性石墨表现最佳。对于超过这些范围的厚度,铜箔表现最佳。

著录项

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2009
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:37:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号