首页> 外文学位 >Biologically inspired approach for robot design and control.
【24h】

Biologically inspired approach for robot design and control.

机译:受生物启发的机器人设计和控制方法。

获取原文
获取原文并翻译 | 示例

摘要

Robots will transform our daily lives in the near future by moving from controlled industrial lines to unstructured and uncertain environments such as home, offices, or outdoors with various applications from healthcare, service, to defense. Nevertheless, two fundamental problems remain unsolved for robots to work in such environments. On one hand, how to design robots, especially meso-scale ones with sizes of a few centimeters, with multiple locomotion abilities to travel in the unstructured environment is still a daunting task. On the other hand, how to control such robots to dynamically interact with the uncertain environment for agile and robust locomotion also requires tremendous efforts. This dissertation tries to tackle these two problems in the framework of biologically inspired robotics.;On the design aspect, it will be shown how biologically principles found in nature can be used to build efficient meso-scale robots with various locomotion abilities such as jumping, wheeling, and aerial maneuvering. Specifically, a robot (MSU Jumper) with continuous jumping ability will be presented. The robot can achieve the following three performances simultaneously. First, it can perform continuous steerable jumping based on the self-righting and the steering capabilities. Second, the robot only requires a single actuator to perform all the functions. Third, the robot has a light weight (23.5 g) to reduce the damage from landing impacts. Based on the MSU Jumper, a robot (MSU Tailbot) with multiple locomotion abilities is discussed. This robot can not only wheel on the ground but also jump up to overcome obstacles. Once leaping into the air, it can also control its body angle using an active tail to dynamically maneuver in mid-air for safe landings.;On the control aspect, a novel non-vector space control method that formulates the problem in the space of sets is presented. This method can be easily applied to vision based control by considering images as sets. The advantage of such a method is that there is no need to extract and track features during the control process, which is required by traditional methods. Based on the non-vector space approach, the compressive feedback is proposed to increase the feedback rate and reduce the computation time. This method is ideal for the control of meso-scale robots with limited sensing and computation ability.;The bio-inspired design illustrated by the MSU Jumper and MSU Tailbot in this dissertation can be applied to other robot designs. Meanwhile, the non-vector space control with compressive feedbacks lays the foundation for the control of high dynamic meso-scale robots. Together, the biologically inspired method for the design and control of meso-scale robots will pave the way for next generation bio-inspired, low cost, and agile robots.
机译:机器人将在不远的将来改变我们的日常生活,将其从受控的工业生产线转移到非结构化且不确定的环境中,例如家庭,办公室或户外,从医疗保健,服务到国防,应有尽有。然而,机器人在这样的环境下工作还没有解决两个基本问题。一方面,如何设计机器人,特别是几厘米大小的中尺度机器人,具有在非结构化环境中移动的多种运动能力,仍然是一项艰巨的任务。另一方面,如何控制此类机器人与不确定的环境动态交互以实现敏捷而强大的运动,也需要付出巨大的努力。本论文试图在生物学启发的机器人学的框架内解决这两个问题。在设计方面,将展示如何利用自然界中发现的生物学原理来构建具有各种运动能力(例如跳跃,滑行和空中机动。具体而言,将介绍具有连续跳跃能力的机器人(MSU跳线)。该机器人可以同时实现以下三个性能。首先,它可以基于自校正和转向功能执行连续的转向跳跃。其次,机器人只需要一个执行器即可执行所有功能。第三,该机器人重量较轻(23.5克),可减少着陆撞击造成的损坏。基于MSU Jumper,讨论了具有多种运动能力的机器人(MSU Tailbot)。该机器人不仅可以在地面上行走,还可以跳起来克服障碍。一旦跃入空中,它还可以使用主动尾巴控制其机体角度,以在空中进行动态操纵以安全着陆。在控制方面,一种新颖的非矢量空间控制方法可以解决飞机在太空中的问题。套被提出。通过将图像视为一组,可以将该方法轻松应用于基于视觉的控制。这种方法的优点是,在控制过程中无需提取和跟踪特征,这是传统方法所必需的。基于非矢量空间方法,提出了压缩反馈,以提高反馈速率,减少计算时间。该方法非常适合控制和检测能力有限的中规模机器人。本论文中以MSU Jumper和MSU Tailbot为例说明的具有生物启发性的设计可以应用于其他机器人设计。同时,具有压缩反馈的非矢量空间控制为高动态中尺度机器人的控制奠定了基础。总而言之,以生物启发方式设计和控制中规模机器人的方法将为下一代以生物启发,低成本和敏捷的机器人铺平道路。

著录项

  • 作者

    Zhao, Jianguo.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号