首页> 外文学位 >Development and interface/surface characterization of titanium dioxide and zinc oxide electron-collection interlayer materials for organic solar cells.
【24h】

Development and interface/surface characterization of titanium dioxide and zinc oxide electron-collection interlayer materials for organic solar cells.

机译:用于有机太阳能电池的二氧化钛和氧化锌电子收集中间层材料的开发和界面/表面表征。

获取原文
获取原文并翻译 | 示例

摘要

My research on metal oxide electron-harvesting interlayers for organic solar cells was focused as three interrelated projects in this dissertation: i) development of a chemical vapor deposition (CVD) system for TiO 2 film; ii) an electrochemical methodology to evaluate ZnO thin film charge (hole) blocking ability; iii) the effects of plasma modifications on sol-gel ZnO and sol-gel ZnO/organic (active layer) interfaces. In i), we showed that nanoscale (12-36 nm) CVD TiO2 film deposited at 210 oC obtains properties of conformal growth, superior hole blocking ability, stoichiometric metal to oxide ratio. The introduction of CVD TiO2 film as an electron transport layer into organic solar cell significantly improves its J-V characteristics. The optimum TiO2 thickness in the OPV device applications was found to be 24 nm with a high fill factor (0.58) and power conversion efficiency (3.7%) obtained. In ii), simple electrochemical methods, i.e., cyclic voltammetry, impedance spectroscopy have been used to evaluate sol-gel derived ZnO (sg-ZnO) and sputtered ZnO (sp-ZnO) porosity and pinhole density. We showed that sg-ZnO with high surface area porous structure allows the probe molecules and poly-thiophene (P3HT) thin layer to direct contact ITO substrate, whereas sp-ZnO with dense structural property efficiently eliminates these electroactivities. This electrochemical property difference also directly reflects on the device shunt resistance (Rp), where we observed larger leakage current for the devices using sg-ZnO than that of devices using sp-ZnO. In iii), we demonstrated low power radio frequency (RF) O2 and Ar plasma treatments have significant impacts on sg-ZnO near-surface chemical compositions, which in turn influence the onset potential of sg-ZnO electron injection and its energetic alignment with electron acceptors, e.g., C60. Using UPS, we found the presence of localized mid-gap states near the Fermi-level of sg-ZnO, which induces the most favorable band bending and the largest vacuum level shift due to significant electron transfer from sg-ZnO to C60. As a result, the resultant solar cells show the best device performance. Upon the plasma treatments, the passivation effects eliminate the mid-gap state. Therefore, we observed less degree of band bending at ZnO/C60 interface and poorer device performance for the plasma treated sg-ZnO.
机译:我对有机太阳能电池金属氧化物电子捕集中间层的研究主要是作为三个相互关联的项目进行的:i)开发用于TiO 2膜的化学气相沉积(CVD)系统; ii)评估ZnO薄膜电荷(空穴)阻挡能力的电化学方法; iii)等离子体改性对溶胶-凝胶ZnO和溶胶-凝胶ZnO /有机(活性层)界面的影响。在i)中,我们显示了在210 oC沉积的纳米级(12-36 nm)CVD TiO2膜具有保形生长,优异的空穴阻挡能力,化学计量的金属与氧化物比率的特性。将CVD TiO2膜作为电子传输层引入有机太阳能电池,可显着改善其J-V特性。发现在OPV器件应用中,最佳TiO2厚度为24 nm,具有高填充因子(0.58)和功率转换效率(3.7%)。在ii)中,已经使用简单的电化学方法,即循环伏安法,阻抗谱法来评价溶胶-凝胶衍生的ZnO(sg-ZnO)和溅射的ZnO(sp-ZnO)的孔隙率和针孔密度。我们发现具有高表面积多孔结构的sg-ZnO允许探针分子和聚噻吩(P3HT)薄层直接接触ITO基板,而具有致密结构特性的sp-ZnO有效地消除了这些电活性。这种电化学性质的差异也直接反映在器件的分流电阻(Rp)上,在该处我们观察到,使用sg-ZnO的器件的漏电流要大于使用sp-ZnO的器件的漏电流。在iii)中,我们证明了低功率射频(RF)O2和Ar等离子体处理会对sg-ZnO近表面化学成分产生重大影响,进而影响sg-ZnO电子注入的起始电势及其与电子的高能取向受体,例如C60。使用UPS,我们发现在sg-ZnO的费米能级附近存在局部的中间能隙状态,由于从sg-ZnO到C60的大量电子转移,它引起了最有利的能带弯曲和最大的真空能级移动。结果,所得的太阳能电池显示出最佳的器件性能。在等离子体处理后,钝化效应消除了中间间隙状态。因此,我们观察到在ZnO / C60界面处的能带弯曲程度较小,而经等离子体处理的sg-ZnO的器件性能较差。

著录项

  • 作者

    Ou, Kai-Lin.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Chemistry Analytical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 243 p.
  • 总页数 243
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号