首页> 外文学位 >Structure and Dynamics in Freezing and Frozen Colloidal Suspensions from Direct Observations and X-ray Scattering.
【24h】

Structure and Dynamics in Freezing and Frozen Colloidal Suspensions from Direct Observations and X-ray Scattering.

机译:从直接观察和X射线散射得出的冷冻和冷冻胶体悬浮液的结构和动力学。

获取原文
获取原文并翻译 | 示例

摘要

Among common substances, water is unique because it can occur in its solid, liquid and vapor phases at temperatures and pressures typical of the Earth's surface. Each of these phases individually play important roles in the physical, chemical, and biological processes that shape the Earth's surface and atmosphere, as well as in the manufacturing, energy production, and agricultural activities that shape our lives. However, only rarely is one phase found in isolation from the other phases or other substances. More often, multiple phases of water coexist with each other and with foreign materials. The resulting interfaces give rise to interesting, new physical phenomena not present in the bulk phases.;My thesis focuses on understanding how ice interacts with other solid materials, such as rocks, dust, cells, or colloidal particles. My experiments comprise a joint direct imaging and X-ray scattering study of particle redistribution in freezing and frozen colloidal suspensions. By using an analog system of monodisperse, spherical colloidal particles in water, I eliminate much of the complexity found in natural or technological settings, and thus investigate the fundamental physics involved. Visible light imaging combined with static and dynamic X-ray scattering provide a unique view of particle rearrangement during and after freezing as well as unprecedented information about the structure and dynamics of the samples at the single particle scale.;After significant supercooling, the solutions freeze in two stages: an unstable first stage and a stable second stage. During the unstable stage, particles segregate into the regions between ice dendrites forming high-particle-density regions. The ice forces these particles into contact, creating aggregates. During the stable stage, the ice engulfs particles in the high-particle-density regions, whereas other particles are pushed ahead of the freezing front. After freezing, the polycrystalline ice coarsens and grain boundary motion scavenges particles from the bulk ice crystals to accumulate in the high density regions at grain boundaries. During coarsening, the particles move ballistically and their characteristic velocity increases with increasing temperature. These results have implications for debris entrainment into glaciers, dust migration in ice sheets, and the fabrication of complex materials.
机译:在常见物质中,水是独特的,因为它可以在地球表面典型的温度和压力下以固相,液相和气相形式存在。每个阶段在塑造地球表面和大气的物理,化学和生物过程以及塑造我们生活的制造,能源生产和农业活动中均起着重要作用。但是,很少会发现一个相与其他相或其他物质隔离。通常,水的多相彼此并与异物共存。由此产生的界面引起了本体相中不存在的有趣的新物理现象。;我的论文着重于了解冰如何与其他固体物质(如岩石,灰尘,细胞或胶体颗粒)相互作用。我的实验包括联合直接成像和X射线散射研究,研究了冷冻和冷冻胶体悬浮液中颗粒的重新分布。通过使用水中的单分散球形胶体颗粒的模拟系统,我消除了自然或技术环境中发现的许多复杂性,因此研究了涉及的基本物理学。可见光成像与静态X射线和动态X射线散射相结合,提供了冷冻过程中和冷冻后颗粒重排的独特视图,以及有关单个颗粒尺度上样品结构和动力学的前所未有的信息。分两个阶段:不稳定的第一阶段和稳定的第二阶段。在不稳定阶段,颗粒分离到冰晶之间的区域,形成高颗粒密度区域。冰迫使这些颗粒接触,形成聚集体。在稳定阶段,冰吞噬了高密度区域中的颗粒,而其他颗粒则被推向冻结前沿。冷冻后,多晶冰变粗,晶界运动清除了块状冰晶中的颗粒,并聚集在晶界的高密度区域。在粗化过程中,粒子弹道运动,其特征速度随温度升高而增加。这些结果对碎屑夹带进入冰川,粉尘在冰原中的迁移以及复杂材料的制造具有影响。

著录项

  • 作者

    Spannuth, Melissa.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Geophysics.;Physics Solid State.;Engineering Geological.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 359 p.
  • 总页数 359
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号