首页> 外文学位 >OPTIMIZATION OF DISCRETE HIGH POWER MOS TRANSISTORS.
【24h】

OPTIMIZATION OF DISCRETE HIGH POWER MOS TRANSISTORS.

机译:离散大功率MOS晶体管的优化。

获取原文
获取原文并翻译 | 示例

摘要

A properly designed and fabricated discrete MOS power transistor has a minimum on-resistance per unit area when operated in the forward direction, and a breakdown voltage approaching plane breakdown with no sudden decrease in breakdown voltage or "latchback" when reverse voltage is applied. This work optimizes the performance of MOS transistors by considering three smaller problems. (1) Maximization of the breakdown voltage of planar MOS transistors for a given epitaxial layer resistivity using planar techniques. (2) Determination of the causes of latchback in the reverse breakdown of power MOS transistors, and modifications to device structure that prevent this latchback. (3) Determination of the fabrication technology and device geometry that gives a minimum on-resistance for a given chip area and breakdown voltage when the MOS transistor is fully conducting. All three problems are experimentally and theoretically investigated in lateral DMOS (LDMOS), vertical DMOS (VDMOS) and V-groove MOS (VMOS) power transistors.; Maximization of the reverse breakdown voltage was investigated using two planar field-shaping techniques--the use of a field plate or the use of field limiting rings--at the perimeter of the body junction. Experiments showed that for less than 250 volts, field plates are more efficient for increasing the breakdown voltage, while field limiting rings are more efficient above 250 volts.; The reverse breakdown characteristics of all three power transistor structures were found to exhibit latchback when the reverse current exceeded a limit. The latchback behavior was found to be caused by lateral current flow through the body region of the MOS transistor. This current flow biases the parasitic NPN transistor that is intrinsic to all DMOS structures in the active region, decreasing the breakdown voltage from the BV(,DSS) of the MOS transistor to the BV(,CEO) of the bipolar transistor. This latchback can be prevented by the addition of a diode with a slightly lower breakdown voltage that diverts the reverse breakdown current around the active region of the MOSFET without altering the normal operation of the MOS transistor in the forward direction.; Investigation to determine which of the transistor structures has the lowest on-resistance as a function of breakdown voltage showed that two device types, LDMOS and VDMOS transistors, provide minimum on-resistance over the entire range of breakdown voltages. The LDMOS structure gives the lowest on-resistance for breakdown voltages of less than 30 to 40 volts, while the VDMOS transistor structure gives the lowest on-resistance for breakdown voltages greater than 30 to 40 volts.
机译:正确设计和制造的分立MOS功率晶体管在正向工作时每单位面积的导通电阻最小,当施加反向电压时,击穿电压接近平面击穿电压,击穿电压不会突然下降或“回跳”。通过考虑三个较小的问题,这项工作优化了MOS晶体管的性能。 (1)使用平面技术在给定的外延层电阻率下最大化平面MOS晶体管的击穿电压。 (2)确定功率MOS晶体管反向击穿中产生回锁的原因,并对器件结构进行修改以防止这种回锁。 (3)确定制造技术和器件的几何形状,以便在MOS晶体管完全导通时对于给定的芯片面积和击穿电压给出最小的导通电阻。在横向DMOS(LDMOS),垂直DMOS(VDMOS)和V槽MOS(VMOS)功率晶体管中,对这三个问题进行了实验和理论研究。使用两种平面场整形技术(在场结的周边使用场板或场限制环)研究了反向击穿电压的最大化。实验表明,对于低于250伏的电压,场板对提高击穿电压更为有效,而对于250伏以上的电压,场限制环更为有效。发现当反向电流超过极限时,所有三个功率晶体管结构的反向击穿特性均表现出回锁。发现闩锁行为是由流过MOS晶体管体区的横向电流引起的。该电流使有源区域中所有DMOS结构固有的寄生NPN晶体管偏置,从而将击穿电压从MOS晶体管的BV(,DSS)降低到双极晶体管的BV(,CEO)。可以通过增加一个击穿电压稍低的二极管来防止这种回锁,该二极管可以在不影响MOS晶体管正向正常工作的情况下转移MOSFET有源区周围的反向击穿电流。进行调查以确定哪个晶体管结构具有最低的导通电阻作为击穿电压的函数表明,两种器件类型LDMOS和VDMOS晶体管在整个击穿电压范围内提供最小的导通电阻。 LDMOS结构在击穿电压小于30至40伏时提供最低的导通电阻,而VDMOS晶体管结构在击穿电压大于30至40伏时提供最低的导通电阻。

著录项

  • 作者

    BLANCHARD, RICHARD AUSTIN.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1982
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号