首页> 外文学位 >GAS-MIXTURE ADSORPTION ISOTHERMS AND DIFFUSIVITIES IN MOLECULAR SIEVES BY PERTURBATION CHROMATOGRAPHY.
【24h】

GAS-MIXTURE ADSORPTION ISOTHERMS AND DIFFUSIVITIES IN MOLECULAR SIEVES BY PERTURBATION CHROMATOGRAPHY.

机译:分子筛上的气体混合吸附等温线和扩散率。

获取原文
获取原文并翻译 | 示例

摘要

A critical analysis of the perturbation chromatography techniques for determining gas adsorption equilibria and intraparticle diffusivities in molecular sieves is presented.; Based on mathematical tractability use of the concentration-pulse method for determining gas adsorption equilibria for mixtures containing three or more components is impractical. The tracer-pulse method, on the other hand, is readily applicable to multicomponent systems. For binary systems, concentration-pulse retention volume data can in some cases be used in conjunction with the Van der Vlist-Van der Meijden method of data reduction to yield reliable gas-mixture adsorption isotherms. Limitations on this procedure are discussed. For binary systems where one component is not adsorbed, the concentration-pulse method gives reliable pure-component isotherms. The tracer-pulse method can be applied to all pressures, even those lower than atmospheric by using helium-dilution. The combined method of the concentration- and tracer-pulse techniques is an extremely valuable method from both economic and practical points of view.; A mathematical model has been developed to describe the chromatographic behavior of a tracer pulse. The moment method was used to extract the intraparticle diffusivities from the experimental data. The adsorption equilibrium constants and diffusivities of ethane and ethylene in 13X molecular sieves were obtained at 118 pKa over a temperature range of 298 to 373 K by the tracer-pulse method. Micropore tracer-diffusivities for C(,2)H(,4) and C(,2)H(,6) range between 3 x 10('-9) and 5 x 10('-8) cm('2)/sec. The activation energies for micropore diffusion are approximately 4.0 for C(,2)H(,4) and 5.5 kcal/mole for C(,2)H(,6). The micropore diffusion is an activated diffusion process. The macropore tracer-diffusivities for C(,2)H(,4) and C(,2)H(,6) are 5.9 x 10('-2) to 7.3 x 10('-2) cm('2)/sec depending on temperature. The diffusion in the macropores is in the ordinary diffusion region instead of the Knudsen region. The adsorption kinetics in small particles were found to be controlled by the micropore diffusion process, but in larger particles by both the macro- and micropore diffusion processes, particularly at high temperature.
机译:提出了用于确定分子筛中气体吸附平衡和颗粒内扩散度的微扰色谱技术的关键分析。基于数学上的可处理性,使用浓度-脉冲法来确定包含三种或更多种成分的混合物的气体吸附平衡是不切实际的。另一方面,示踪脉冲法很容易适用于多组分系统。对于二元系统,在某些情况下可以将浓度脉冲保留体积数据与Van der Vlist-Van der Meijden数据缩减方法结合使用,以产生可靠的气体混合物吸附等温线。讨论了此过程的局限性。对于不吸附一种组分的二元体系,浓度脉冲法可提供可靠的纯组分等温线。示踪脉冲法可通过氦气稀释法应用于所有压力,甚至低于大气压力。从经济和实践的角度来看,集中脉冲和示踪脉冲技术的组合方法是非常有价值的方法。已经开发出数学模型来描述示踪脉冲的色谱行为。使用矩量法从实验数据中提取粒子内扩散率。通过示踪脉冲法在298至373 K的温度范围内以118 pKa的压力获得了13X分子筛中乙烷和乙烯的吸附平衡常数和扩散系数。 C(,2)H(,4)和C(,2)H(,6)的微孔示踪剂扩散范围在3 x 10('-9)和5 x 10('-8)cm('2)之间/秒。 C(,2)H(,4)的微孔扩散活化能约为4.0,C(,2)H(,6)的活化能约为5.5 kcal / mol。微孔扩散是激活的扩散过程。 C(,2)H(,4)和C(,2)H(,6)的大孔示踪剂扩散率为5.9 x 10('-2)至7.3 x 10('-2)cm('2) /秒,具体取决于温度。大孔中的扩散是在普通扩散区域而不是克努森区域。发现小颗粒中的吸附动力学受微孔扩散过程控制,而大颗粒中的吸附动力学受大孔和微孔扩散过程控制,特别是在高温下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号