首页> 外文学位 >A MATHEMATICAL MODEL FOR THE POROUS NICKEL HYDROXIDE ELECTRODE.
【24h】

A MATHEMATICAL MODEL FOR THE POROUS NICKEL HYDROXIDE ELECTRODE.

机译:多孔氢氧化镍电极的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

A one-dimensional model of the porous nickel hydroxide electrode has been presented, based on porous electrode theory. The specific equations used in the model were the equation for current in the solution, the kinetic expression, the charge balance equation, the overall material balance equation, the material balance in the solid state, and the material balance for a minority species. An activation controlled rate expression for the charge-discharge reaction; (beta)-Ni(OH)(,2) + OH('-) (DBLARR) (beta)-NiOOH = H(,2)O + e('-); is proposed. The apparent electrochemical transfer coefficients(alpha)(,a), (alpha)(,c) and the exchange current density i(,0) were determined from potentiostatic polarization of film electrodes. The electrodes were prepared by electrolytic impregnation in a 1.8M nickel-nitrate-0.2M cobalt nitrate solution in 50% ethanol-50% water. The values determined were 0.17, 0.10 and 6.1 x 10('-5) A/cm('2) for (alpha)(,a), (alpha)(,c), and i(,0), respectively, in 30% KOH at 25(DEGREES)C. Experiments in 20% KOH were also conducted, yielding a value of 5.8 x 10('-5) A/cm('2) for i(,0).; Using the values of these coefficients and other data reported in the literature, the porous electrode model was solved with an IBM 3033 computer. Galvanostatic charging and discharging of electrodes at various currents corresponding to 1-hour, 2-hour, 5-hour, 10-hour, and 20-hour rates were simulated. The variables predicted by the model were nickel hydroxide reaction rate, current and potential in the solution, volume average flow rate of electrolyte, electrode porosity, and electrolyte concentration as functions of time and electrode width. The model reproduces charge-discharge cycles and hysteresis satisfactorily and also calculates the charging and ampere-hour efficiencies. The important results obtained were that the uniformity of the rate of reaction across the electrode width increases with decreasing charge rate, the loss due to hysteresis increases with increasing charge rate and with decreasing specific area, the charging and ampere-hour efficiencies increase with the charge rate, and the electrode capacity decreases with increasing discharge rate. The results obtained were consistent with experimental data reported in the literature.
机译:基于多孔电极理论,提出了多孔氢氧化镍电极的一维模型。模型中使用的特定方程式是溶液中的电流方程式,动力学表达式,电荷平衡方程式,整体材料平衡方程式,固态材料平衡和少数物种的材料平衡。充放电反应的活化控制速率表达; β-Ni(OH)(,2)+ OH('-)(DBLARR)β-NiOOH= H(,2)O + e('-);被提议。由膜电极的恒电位极化确定表观电化学转移系数α(,a),α(,c)和交换电流密度i(,0)。通过在1.8M硝酸镍-0.2M硝酸钴的50%乙醇-50%水中电解浸渍来制备电极。确定的值分别为0.17、0.10和6.1 x 10('-5)A / cm('2),其中α(,a),α(,c)和i(,0)在25°C时30%KOH。还进行了在20%KOH中的实验,得出i(,0)的值为5.8 x 10('-5)A / cm('2)。使用这些系数的值和文献中报道的其他数据,用IBM 3033计算机求解了多孔电极模型。模拟了在对应于1小时,2小时,5小时,10小时和20小时速率的各种电流下电极的恒电流充电和放电。该模型预测的变量是氢氧化镍反应速率,溶液中的电流和电势,电解质的体积平均流速,电极孔隙率和电解质浓度随时间和电极宽度的变化。该模型令人满意地再现了充放电循环和磁滞,还计算了充电效率和安培小时效率。获得的重要结果是,整个电极宽度上反应速率的均匀性随充电速率的降低而增加,由于磁滞引起的损耗随充电速率的增加而增加,并且随着比表面积的减小,充电和安培小时效率随充电而增加电极容量随放电速率的增加而降低。获得的结果与文献报道的实验数据一致。

著录项

  • 作者

    SINHA, MANOJIT.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 1982
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号