首页> 外文学位 >Investigating the Interaction of a Supersonic Single Expansion Ramp Nozzle and Sonic Wall Jet
【24h】

Investigating the Interaction of a Supersonic Single Expansion Ramp Nozzle and Sonic Wall Jet

机译:研究超音速单膨胀斜坡喷嘴和声波壁式射流的相互作用

获取原文
获取原文并翻译 | 示例

摘要

For nearly 80 years, the jet engine has set the pace for aviation technology around the world. Complexity of design has compounded upon each iteration of nozzle development, while the rate of fundamental fluids knowledge struggles to keep up. The increase in velocities associated with supersonic jets, have exacerbated the need for flow physics research. Supersonic flight remains the standard for military aircraft and is being rediscovered for commercial use. With the addition of multiple streams, complex nozzle geometries, and airframe integration in modern aircraft, the flow physics rapidly become more difficult. As performance capabilities increase, so do the noise producing mechanisms and unsteady dynamics. This has prompted an experimental investigation into the flow field and turbulence quantities of a modern jet nozzle configuration.;A rectangular supersonic multi-stream nozzle with aft deck is characterized using time-resolved schlieren imaging, stereo PIV measurements, deck mounted pressure transducers, and far-field microphones. These experiments are performed at the Skytop Turbulence Laboratory at Syracuse University. LES data by The Ohio State University are paired with these experiments and give valuable insight into regions of the flow unable to be probed. By decomposing this complex flow field into two canonical flows, a supersonic rectangular nozzle and a sonic wall jet, a fundamental approach is taken to observe how these two jets interact.;Thorough investigations of the highly turbulent flow field are being performed. Current analytical techniques employed are statistical quantities, turbulence properties, and low-dimensional models. Results show a dominant high frequency structure that propagates through the entire field and is observable in all experimental methods. The structures emanate from the interaction point of the supersonic jet and sonic wall jet. Additionally, the propagation paths are directionally dependent. Further, spanwise PIV measurements observe the asymmetric nozzle to be relatively two-dimensional across half of the jet span.;An investigation into the effect of the aft deck has shown that the jet plume deflection depended on the aft deck length. This deflection is tied to separation and reattachment caused by reflecting oblique shocks. Additionally, low-dimensional models in the form of POD and DMD observe the most energetic and periodic structures in the turbulent flow field. Finally, these experimental results are paired with LES using data fusion techniques to form a more complete view of the flow. The comprehensive dataset will help validate computational models and create a basis for future SERN and aft deck designs.
机译:在将近80年的时间里,喷气发动机已经引领了全球航空技术的发展步伐。在喷嘴开发的每次迭代中,设计的复杂性都变得更加复杂,而基础流体知识的普及率却难以跟上。与超音速喷射有关的速度的增加,加剧了对流动物理学研究的需求。超音速飞行仍然是军用飞机的标准,并且正在重新发现以用于商业用途。随着现代飞机中增加了多股气流,复杂的喷嘴几何形状和机身集成,流动物理学迅速变得更加困难。随着性能的提高,噪声产生机制和不稳定的动态也会随之增加。这促使人们对现代喷嘴配置的流场和湍流量进行实验研究。;带有后甲板的矩形超音速多流喷嘴的特征在于时间分辨的schlieren成像,立体PIV测量,甲板安装的压力传感器和远场麦克风。这些实验是在锡拉丘兹大学(Syracuse University)的Skytop Turbulence实验室进行的。俄亥俄州立大学的LES数据与这些实验结合使用,可以对无法探测的流量区域提供有价值的见解。通过将这个复杂的流场分解为两个典型的流,一个超音速矩形喷嘴和一个声波壁射流,采取了一种基本的方法来观察这两个射流是如何相互作用的;进行了对高度湍流场的全面研究。当前采用的分析技术是统计量,湍流特性和低维模型。结果显示了一个占主导地位的高频结构,该结构在整个场中传播,并且在所有实验方法中均可观察到。这些结构是从超音速射流和声波壁射流的相互作用点产生的。另外,传播路径是方向相关的。此外,沿翼展方向的PIV测量可观察到不对称喷嘴在整个喷射跨度的一半范围内是相对二维的。对后甲板效果的研究表明,喷射羽流偏转取决于后甲板长度。这种偏转与反射斜波引起的分离和重新连接有关。此外,POD和DMD形式的低维模型在湍流场中观察到了最具能量和周期性的结构。最后,使用数据融合技术将这些实验结果与LES配对,以形成流程的更完整视图。全面的数据集将有助于验证计算模型,并为将来的SERN和后甲板设计奠定基础。

著录项

  • 作者

    Berry, Matthew G.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 290 p.
  • 总页数 290
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号