首页> 外文学位 >HIGH CRITICAL TEMPERATURE SNS JOSEPHSON MICROBRIDGES.
【24h】

HIGH CRITICAL TEMPERATURE SNS JOSEPHSON MICROBRIDGES.

机译:高温SNS JOSEPHSON微桥。

获取原文
获取原文并翻译 | 示例

摘要

This thesis work presents a new technique for reproducibly fabricating superconductor-normal metal-superconductor (SNS) Josephson microbridges which can be used with a wide variety of superconductors and normal metals. We have used this technique to make the first high-T(,c) SNS microbridges and dc SQUID's, employing Nb(,3)Ge or Nb(,3)Sn for the superconductor and Cu for the normal metal. These devices have the widest operating temperature range of any Josephson device, among other advantages. They have nearly ideal characteristics: sharply defined critical currents (I(,c)) with a voltage rise resembling a square root behavior, large I(,c)R(,n) products, and heating restricted to large dissipation. The modulation of the critical current in an applied magnetic field is nearly ideal and sharp constant voltage steps are observed in the current-voltage characteristic when microwaves are applied.; These properties are compared with the Likharev-Usadel model for the I(,c)R(,n) product, modified to take into account out geometry. We find reasonable agreement with the predictions of the model, both as a function of temperature and as a function of bridge length. The latter has been made possible for the first time due to the reproducibility of our technique. New boundary conditions are presented for this model. The dynamic behavior is described by the time-dependent Ginzburg-Landau theory. We show calculations for the current-voltage characteristics and new results which include the effect of microwaves. Both of these are in excellent agreement with the measured characteristics.; Further possibilities for using this fabrication procedure in studies of basic physics and useful applications are investigated.
机译:本文工作提出了一种可重复制造超导体-普通金属-超导体(SNS)约瑟夫森微桥的新技术,该微桥可与多种超导体和普通金属一起使用。我们已经使用此技术制作了第一个高T(,c)SNS微桥和dc SQUID,采用超导体Nb(,3)Ge或Nb(,3)Sn和普通金属Cu。与其他约瑟夫森设备相比,这些设备具有最宽的工作温度范围。它们具有近乎理想的特性:具有类似于平方根行为的电压上升的清晰定义的临界电流(I(,c)),大的I(,c)R(,n)乘积以及受制于大耗散的加热。施加磁场中的临界电流调制几乎是理想的,并且当施加微波时,在电流-电压特性中观察到尖锐的恒定电压阶跃。将这些属性与I(,c)R(,n)乘积的Likharev-Usadel模型进行比较,并对其进行了修改以考虑到几何形状。我们发现,该模型的预测与温度和桥梁长度的函数都合理地吻合。由于我们技术的可重复性,后者首次成为可能。为该模型提出了新的边界条件。动态行为由时变的Ginzburg-Landau理论描述。我们展示了电流-电压特性的计算以及包括微波效应在内的新结果。两者都与所测得的特性非常吻合。研究了在基本物理研究和有用应用中使用此制造程序的其他可能性。

著录项

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1982
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号