首页> 外文学位 >TAYLOR'S THEOREM WITH REMAINDER: THE LEGACY OF LAGRANGE, AMPERE, AND CAUCHY.
【24h】

TAYLOR'S THEOREM WITH REMAINDER: THE LEGACY OF LAGRANGE, AMPERE, AND CAUCHY.

机译:泰勒定理有余:拉格朗日,安培和考奇的遗产。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation undertakes an analysis of the various treatments of the remainder term in Taylor's formula, from its initial consideration by Lagrange to its use in convergence theorems by Cauchy. The main authors whose works are analyzed are Lagrange, Ampere and Cauchy, with passing reference to d'Alembert, Prony, Laplace, and Lacroix, among others.;Ampere's main achievement was to relate the Taylor formula (polynomial plus remainder term) to the Newton interpolatory formula (polynomial plus remainder term). At different times, Ampere found two different remainder formulas:;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;and.;Lagrange's main contributions are shown to be his important upper and lower estimates for the remainder, and secondly, two explicit formulas for the remainder: the intermediate-value formula and, in essence, the familiar integral formula. Basic to these results are his "monotonicity lemma" and a "telescoping identity" for a suitable derivative of the remainder. Much of his approach remains valuable, and eminently teachable today.;(x-a)('n)f(,n){a,a,...,a,x}.;Here f(,n)(x(,0),x(,1),...,x(,n)) stands for the nth divided difference of f; Ampere required this to be suitably defined even when there are coincidences among its arguments. By contrast, Ampere derived his first remainder in a self-contained way, with no reference to divided differences. It is shown that this derivation can be interpreted as a modification of the standard derivation of Newton's interpolatory formula, but with successive derivatives everywhere replacing successive divided differences. Ampere showed how his first remainder leads to Lagrange's estimates. The dissertation shows how this remainder also leads to the integral formula, and moreover clarifies the relation between Ampere's two remainders.;With Cauchy, one arrives at essentially modern exposition. Although Cauchy was in some ways indebted to Ampere (and of course, Lagrange), by the time he had finished his repeated attacks on expressions for the remainder, virtually all the devices now used in exposition were in place. Apart from certain lapses involving uniformity concepts, Cauchy's various remainder derivations involving single integrals, multiple integrals, integration by parts, ordinary mean value theorem, Cauchy mean value theorem, and the modern form of the telescoping identity were all presented in virtually impeccable form.
机译:本文对泰勒公式中剩余项的各种处理方法进行了分析,从拉格朗日的最初考虑到柯西在收敛定理中的使用。分析其著作的主要作者是Lagrange,Ampere和Cauchy,并引用了d'Alembert,Prony,Laplace和Lacroix等。Ampere的主要成就是将泰勒公式(多项式加余项)与牛顿插值公式(多项式加余项)。在不同的时间,Ampere发现了两个不同的余数公式:(省略了图表,表格或图形...请参见DAI);以及。; Lagrange的主要贡献显示为他对余数的重要上下估计,其次,其余两个明确的公式:中间值公式和本质上熟悉的积分公式。这些结果的基础是他的“单调性引理”和适合剩余部分派生的“伸缩身份”。他的大部分方法仍然很有价值,并且在今天值得关注。;(xa)('n)f(,n){a,a,...,a,x} .;这里f(,n)(x(, 0),x(,1),...,x(,n))代表f的n次除数;即使安培的参数之间有巧合,安培也需要对此进行适当的定义。相比之下,安培(Ampere)以独立的方式得出了他的第一个余数,而没有提及分歧。结果表明,该推导可以解释为对牛顿插值公式的标准推导的一种修改,但是到处都有连续的导数替换了连续的除法差。安培(Ampere)展示了他的余数如何导致拉格朗日(Lagrange)的估算。论文证明了这种余数如何也导致了积分公式,并且阐明了安培的两种余数之间的关系。尽管Cauchy在某种程度上应归功于Ampere(当然还有Lagrange),但是当他完成对其余表达的反复攻击时,实际上现在用于展示的所有设备都已经到位。除了某些涉及统一性概念的失误外,柯西的各种余数推导还涉及无可辩驳的形式,其中涉及单个积分,多个积分,各部分的积分,普通均值定理,柯西均值定理和伸缩形式的现代形式。

著录项

  • 作者

    WALKER, HELENE E.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Science history.
  • 学位 Ph.D.
  • 年度 1983
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:51:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号