首页> 外文学位 >COPPER(I)SULFIDE/ZINC CADMIUM-SULFIDE THIN FILM HETEROJUNCTION SOLAR CELL STUDIES.
【24h】

COPPER(I)SULFIDE/ZINC CADMIUM-SULFIDE THIN FILM HETEROJUNCTION SOLAR CELL STUDIES.

机译:硫化铜(I)/锌硫化镉薄膜异质结太阳能电池研究。

获取原文
获取原文并翻译 | 示例

摘要

The main goals of this thesis were to compare Cu(,2)S/CdS and Cu(,2)S/ZnCdS cells using Cu(,2)S/CdS cells as a reference, and to understand the operation and properties of Cu(,2)S/ZnCdS cells in order to improve cell performance. Four different measurements were used: electrical, spectral, capacitance and deep trap.;Spectral response with and without bias light were measured for both Cu(,2)S/CdS and Cu(,2)S/ZnCdS cells. White and blue bias light enhance the spectral response, while red bias light quenches the response. This is attributed to ionization and filling of deep traps near the junction.;Capacitance measurements on both cell types show that 1/C('2) versus voltage is quite flat, which indicates the existence of an i-layer (insulation layer) in the CdS or ZnCdS near the junction.;Three methods--photocapacitance, space-charge-limited current, and thermally stimulated current techniques--were used for deep trap measurements. Photocapacitance measurements indicate one deep donor energy and two deep acceptor energy levels. These trap energies become larger as the content of Zn in ZnCdS increases. Space-charge-limited current measurements give a trap density of the order of 10('16) cm('-3) for both cell types. The shallow energy trap is found to be 0.26 eV below the conduction band edge of CdS. The occurrence of a current-saturated region for Cu(,2)S/ZnCdS is attributed to the filling of the interface traps near the junction.;I-V measurements give important electrical parameters of the cells; cell efficiency, fill factor, short circuit current, open circuit voltage, shunt resistance and series resistance are reported.;From the above results, several differences between the Cu(,2)S/CdS and the Cu(,2)S/ZnCdS cells can be seen. The Cu(,2)S/ZnCdS cells show stronger red quenching, smaller electron lifetime at the interface near the junction, and deeper traps than the Cu(,2)S/CdS cells. These differences can account for the decline of I(,sc) and the V(,oc) decay. The smaller I(,sc) for the Cu(,2)S/ZnCdS cells can also possibly result from smaller electron lifetime at the interface, larger interface recombination velocity, different deep trap levels, and enhanced Zn concentration near the junction. The V(,oc) decay for the Cu(,2)S/ZnCdS cells is mostly due to long decay of charge. Longer decay could be attributed to deeper traps. (Abstract shortened with permission of author.).
机译:本文的主要目的是比较以Cu(,2)S / CdS电池为参考的Cu(,2)S / CdS和Cu(,2)S / ZnCdS电池,并了解Cu的操作和性能(,2)S / ZnCdS电池,以提高电池性能。使用了四种不同的测量:电,光谱,电容和深阱。在Cu(,2)S / CdS和Cu(,2)S / ZnCdS电池中测量了有和没有偏置光的光谱响应。白色和蓝色偏光增强了光谱响应,而红色偏光则抑制了响应。这归因于电离和结附近的深陷阱的填充。两种电池类型的电容测量结果表明,1 / C('2)与电压的关系相当平坦,这表明存在i层(绝缘层)。深结测量使用了三种方法-光电容,空间电荷限制电流和热激励电流技术-结点处的CdS或ZnCdS。光电容测量表明一个深的供体能量和两个深的受体能级。这些陷阱能随着ZnCdS中Zn含量的增加而变大。对于两种电池类型,受空间电荷限制的电流测量结果得出的陷阱密度约为10('16)cm('-3)。发现浅能阱在CdS的导带边缘以下0.26 eV。 Cu(,2)S / ZnCdS的电流饱和区域的出现归因于结附近界面陷阱的填充。I-V测量给出了电池的重要电参数。报告了电池效率,填充系数,短路电流,开路电压,分流电阻和串联电阻。根据以上结果,Cu(,2)S / CdS与Cu(,2)S / ZnCdS之间存在一些差异可以看到细胞。与Cu(,2)S / CdS电池相比,Cu(,2)S / ZnCdS电池显示出更强的红色猝灭,结附近界面处的电子寿命更短,陷阱更深。这些差异可以解释I(,sc)的下降和V(,oc)的下降。 Cu(,2)S / ZnCdS电池的I(,sc)较小也可能是由于界面处的电子寿命更短,界面重组速度更大,不同的深陷阱能级以及结附近的Zn浓度增加所致。 Cu(,2)S / ZnCdS电池的V(,oc)衰减主要归因于电荷的长时间衰减。更长的衰减可能归因于更深的陷阱。 (摘要经作者许可缩短。)。

著录项

  • 作者

    CHANG, SHANG-WEN.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1985
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号