首页> 外文学位 >Bayesian Inference with Combined Dynamic and Sparsity Models: Application in 3D Electrophysiological Imaging
【24h】

Bayesian Inference with Combined Dynamic and Sparsity Models: Application in 3D Electrophysiological Imaging

机译:结合动态和稀疏模型的贝叶斯推理:在3D电生理成像中的应用

获取原文
获取原文并翻译 | 示例

摘要

Data-driven inference is widely encountered in various scientific domains to convert the observed measurements into information that cannot be directly observed about a system. Despite the quickly-developing sensor and imaging technologies, in many domains, data collection remains an expensive endeavor due to financial and physical constraints. To overcome the limits in data and to reduce the demand on expensive data collection, it is important to incorporate prior information in order to place the data-driven inference in a domain-relevant context and to improve its accuracy.;Two sources of assumptions have been used successfully in many inverse problem applications. One is the temporal dynamics of the system (dynamic structure). The other is the low-dimensional structure of a system (sparsity structure). In existing work, these two structures have often been explored separately, while in most high-dimensional dynamic system they are commonly co-existing and contain complementary information.;In this work, our main focus is to build a robustness inference framework to combine dynamic and sparsity constraints. The driving application in this work is a biomedical inverse problem of electrophysiological (EP) imaging, which noninvasively and quantitatively reconstruct transmural action potentials from body-surface voltage data with the goal to improve cardiac disease prevention, diagnosis, and treatment. The general framework can be extended to a variety of applications that deal with the inference of high-dimensional dynamic systems.
机译:数据驱动的推理在各个科学领域都得到了广泛的应用,以将观察到的测量结果转换为无法直接观察到的系统信息。尽管传感器和成像技术发展迅速,但在许多领域,由于财务和物理限制,数据收集仍然是一项昂贵的工作。为了克服数据的限制并减少对昂贵的数据收集的需求,重要的是要合并先验信息,以便将数据驱动的推理置于与领域相关的上下文中并提高其准确性。已成功用于许多反问题应用程序中。一种是系统的时间动力学(动态结构)。另一个是系统的低维结构(稀疏结构)。在现有工作中,经常会分别探讨这两种结构,而在大多数高维动态系统中,这两种结构通常是共存的,并且包含互补信息。在本工作中,我们的主要重点是建立将动态性结合起来的鲁棒性推断框架。和稀疏性约束。这项工作中的驱动应用是电生理(EP)成像的生物医学逆问题,该问题从体表电压数据无创且定量地重建跨壁动作电位,旨在改善心脏病的预防,诊断和治疗。通用框架可以扩展到处理高维动态系统推断的各种应用程序。

著录项

  • 作者

    Xu, Jingjia.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Computer science.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号