首页> 外文学位 >Developing the therapeutic potential of intrathecal administration strategies through protein PEGylation and microparticle encapsulation and release of pDNA.
【24h】

Developing the therapeutic potential of intrathecal administration strategies through protein PEGylation and microparticle encapsulation and release of pDNA.

机译:通过蛋白质PEG化,微粒包裹和pDNA释放开发鞘内给药策略的治疗潜力。

获取原文
获取原文并翻译 | 示例

摘要

There is a pressing need to improve drug delivery to the brain and spinal cord for the treatment of central nervous system disorders, as formidable obstacles that impede central nervous system delivery limit the clinical relevance of many potential treatments. Direct drug administration to the cerebrospinal fluid (intrathecal administration) is often required to overcome delivery limitations for promising therapies. While intrathecal administration overcomes some delivery obstacles, rapid drug degradation and clearance still necessitate the development of approaches that prolong drug efficacy. Therapeutic treatments utilizing proteins and plasmid DNA (pDNA) are particularly limited by inadequate intrathecal delivery technology. In this thesis, short-term intrathecal protein treatment paradigms were improved by covalently attaching polyethylene glycol (PEG) to brain derived neurotrophic factor (BDNF) and interleukin-10 (IL-10) in a manner that enabled high in vitro biological activity retention. In animal models PEGylation increased resultant protein concentrations in the cerebrospinal fluid over time, and PEGylating IL-10 enhanced its in vivo therapeutic efficacy for the resolution of neuropathic pain by nearly threefold. To overcome prior obstacles with long-term intrathecal treatment strategies for enhanced pain states, biodegradable microparticles containing pDNA for IL-10 were developed. These microparticles resulted in a sustained in vitro release of pDNA and enabled single administration therapeutic efficacy for the long-term resolution of neuropathic pain. Further in vivo explorations with confocal microscopy and fluorescently labeled microparticles demonstrated that microparticles embedded within the tissue surrounding the spinal cord and persisted for prolonged time periods. Microparticle administrations also promoted the infiltration of phagocytic cell types into the cerebrospinal fluid for a prolonged expression of therapeutic pDNA. Overall, these studies demonstrate that polymer-mediated delivery strategies that enhance protein concentrations over time and sustain pDNA release can reduce dosages, minimize intervention requirements and significantly enhance the therapeutic potential of both short- and long-term intrathecal treatment approaches.
机译:迫切需要改善对大脑和脊髓的药物输送以治疗中枢神经系统疾病,因为阻碍中枢神经系统传递的巨大障碍限制了许多潜在治疗方法的临床意义。通常需要直接向脑脊液给药(鞘内给药),以克服有希望的治疗方法的递送限制。尽管鞘内给药克服了一些递送障碍,但是药物的快速降解和清除仍然需要开发延长药物功效的方法。利用蛋白质和质粒DNA(pDNA)的治疗方法受到鞘内递送技术不足的限制。在本文中,通过将聚乙二醇(PEG)共价连接到脑源性神经营养因子(BDNF)和白介素10(IL-10)上,从而可以实现较高的体外生物活性保留,从而改善了鞘内短期蛋白质治疗方法。在动物模型中,聚乙二醇化会随着时间的推移增加脑脊液中蛋白质的合成浓度,而聚乙二醇化的IL-10可以将其体内治疗神经病性疼痛的疗效提高近三倍。为了通过长期鞘内治疗策略克服先前的障碍以改善疼痛状态,开发了针对IL-10的含有pDNA的可生物降解微粒。这些微粒导致pDNA的体外持续释放,并使单次给药的治疗功效可长期缓解神经性疼痛。使用共聚焦显微镜和荧光标记的微粒进行的进一步体内探索表明,微粒嵌入脊髓周围组织内并持续了较长时间。微粒给药还促进了吞噬细胞类型向脑脊髓液中的浸润,从而延长了治疗性pDNA的表达。总体而言,这些研究表明,聚合物介导的递送策略可随着时间的推移提高蛋白质浓度并维持pDNA释放,可以减少剂量,最小化干预要求并显着增强短期和长期鞘内治疗方法的治疗潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号