首页> 外文学位 >CABLE THEORY MODELING OF THE EFFECTIVENESS OF SYNAPTIC INPUTS IN CORTICAL PYRAMIDAL CELLS.
【24h】

CABLE THEORY MODELING OF THE EFFECTIVENESS OF SYNAPTIC INPUTS IN CORTICAL PYRAMIDAL CELLS.

机译:皮质锥体细胞中突触输入效率的电缆理论建模。

获取原文
获取原文并翻译 | 示例

摘要

The effectiveness of synaptic inputs in cortical pyramidal neurons is explored in a variety of circumstances with a passive cable model. This model gives the transient voltage response in the dendritic tree due to current, voltage, or synaptic input, or distributions of ionic conductances. It has many advantages over compartmental models, other continuous cable models, and numerical integration approaches including SPICE.;The activation-distribution (distribution of activated synapses) can affect the effectiveness of individual inputs by changing the local resting potential and the electrotonic distance from the soma to the input location. Fourfold variations in the peak transient soma potential may occur with certain activation-distributions. Removal of afferents such as may occur in in vitro preparations can affect the activation-distribution and thus change the effectiveness of individual inputs and the electrophysiological properties of the cell.;Inputs on dendritic spines are less effective than inputs on dendritic shafts, especially for large synaptic conductance changes. An expression is derived relating changes in spine head and stem length and diameter to the potential generated at the dendritic shaft. Using this expression it was found that changes in spine stem dimensions, but not in spine head dimensions, could change the effectiveness of an input. However the changes were small. It appears likely that voltage-dependent conductances in spines could be very important for synaptic plasticity and effectiveness.;The model was used to explore morphological determinants of the effectiveness of synaptic input. Synaptic inputs at the same physical or electrotonic distance from the soma may produce quite different changes in soma potential because of end effects or load effects. For a single input there is a set of process diameters which will maximize the effectiveness of that input. R(,m) or R(,i) changes will affect the location of synapses operating at optimal effectiveness. Anatomical data limitations such as shrinkage or incomplete staining will affect the modeled effectiveness of different inputs in different ways. Excluding spines in a model will make synapses appear to be much more effective than they are. Tapering processes can be modeled by two or more segments of different diameters.
机译:皮层锥体神经元中突触输入的有效性已在各种情况下使用被动电缆模型进行了探讨。该模型给出了由于电流,电压或突触输入或离子电导的分布而引起的树状树中的瞬态电压响应。与隔室模型,其他连续电缆模型以及包括SPICE在内的数值积分方法相比,它具有许多优势。激活分布(激活突触的分布)可以通过改变局部静息电位和与声波的距离来影响单个输入的有效性。躯干到输入位置。峰值瞬态躯体电位的四倍变化可能随某些激活分布而发生。诸如在体外制剂中可能发生的传入物质的去除会影响激活分布,从而改变单个输入的有效性和细胞的电生理特性。树突棘的输入比树突轴的输入效果差,特别是对于大型树突。突触电导变化。得出一个表达式,将脊柱头和茎长度和直径的变化与在树突轴处产生的电势相关。使用该表达式发现,改变脊柱茎的尺寸而不改变脊柱头部的尺寸可以改变输入的有效性。但是变化很小。似乎棘突中的电压依赖性电导对于突触可塑性和有效性可能非常重要。;该模型用于探讨突触输入有效性的形态学决定因素。由于最终效应或负载效应,与躯体处于相同物理距离或电声距离的突触输入可能会产生相当不同的躯体电位变化。对于单个输入,有一组过程直径将最大化该输入的有效性。 R(,m)或R(,i)的变化将影响以最佳效果运行的突触的位置。诸如收缩或不完全染色之类的解剖数据限制将以不同方式影响不同输入的建模有效性。排除模型中的棘突将使突触看起来比其有效得多。渐缩过程可以通过两个或更多个不同直径的段进行建模。

著录项

  • 作者

    HOLMES, WILLIAM ROBERT.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 1986
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号